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Second topological conjugate transformation in symbolic dynamics
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A topological conjugate transformation defined as the joint actions of both the Derrida-Gervois-Pomeau
~DGP! * product operationQC* in the symbolic space~or its corresponding parameter space! and the mapping
f uQCu in the symbolic dynamics of the interval, which with respect to the first topological conjugate transfor-
mation ~the merely action ofQC* ! is called the second topological conjugate transformation, is found. It
reveals conspicuously clustering of the orbital points and preserves the topological entropy of the dynamical
systems. In analogy to the first topological conjugate transformation, there exist also infinitely many second
topological conjugate maps. The second topological conjugate transformation provides a topological founda-
tion for Feigenbaum’s@J. Stat. Phys.19, 25 ~1978!; 21, 669 ~1979!# universalities and a basic topological
method for discriminating the compound words in the sense of the DGP* product in the symbolic spaceS2 of
two letters. Therefore it opens up a way to seek the generalized* product for the more complex dynamical
systems.@S1063-651X~98!06405-8#

PACS number~s!: 05.45.1b, 03.20.1i
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I. INTRODUCTION

Simple one-dimensional iterative systems display a r
connotation @1#. Many studies reveal that the Derrida
Gervois-Pomeau~DGP! * product@2# plays a key role in the
understanding of the regularities in the chaotic phenom
aroused by nonlinearities@3#. It explains the self-similarity
and self-embedding phenomena therein and provides a r
ous symbolic formalism for expounding the invariance
dynamical systems. Therefore, further research on the c
acteristics of the DGP productQC* becomes increasingly
important in exploring the regularities of nonlinear compl
phenomena. First of all,QC* allows us to describe the rela
tion between two kneading invariants of two different ma
related by the renormalization transformation@4#. Second,
QC* is a symbolic representation of Feigenbaum peri
p-tupling bifurcation processes@i.e., the kneading sequenc
series (QC)* n, n51,2,...# and the universal constan
d(QC) and a(QC) characterize the contraction and se
embedding in the parametric space under the action of
operatorQC* , while the renormalization group can be com
prehended as a result of continuously actingQC* in the
symbolic space or its corresponding parametric space of
dynamical systems. Third, recent results@3# show that for
any superstable kneading sequenceQC, the subinterval
QC* @L`,RL`# corresponds to the entire interval@L`,RL`#
under a one-to-one mappingQC* and it is a 1/d(Q) times
contraction of the entire interval; ifQCÞ(RC)* n, then the
subintervalQC* @L`,RL`# forms an equal topological en
tropy class with a topological entropyht„f lQC

(x)… that ex-
presses a step in the entropy devil’s staircase. Because
action of the operatorQC* keeps the topological entrop

*Electronic address: slpeng@ynu.edu.cn
†Electronic address: xszhang@ynu.edu.cn
‡Mailing address.
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constant, we call the operationQC* : S2→S2 in the sym-
bolic spacethe first topological conjugate transformatio
from the viewpoint of the parameter shiftht„f lQC* S

(x)…

5ht„f lQC
(x)… for QCÞ(RC)* n, SPS2 , whereS2 is the set

formed by all the admissible words of two letters@3#. It is
important that the main @(QC)* n# and associated
@(QC)* n* S# Feigenbaum universalities are confined with
the equal topological entropy class. Accordingly, the ope
tor QC* reveals the vigorous global regularities and the
der structures in the chaotic phenomena. In this way,
DGP* product is a fundamental tool to study the topologic
and metric behaviors in the unimodal maps and other pie
wise monotone maps@5,6#.

The mappingf is a basic method to study the behavior
a dynamical system. For a period-p system, the mapping ca
show its periodicity byp times iterations: f p(x)5x. For an
arbitrary orbit of a dynamical system represented by a sy
bolic sequence~word! S with parameterlS , on the one
hand, the coordinates~or positions! of its orbital points in the
symbolic space are labeled by the shift operations$wkS%k50

k5uSu

~here uSu denotes the length of wordS! according to the
Metropolis-Stein-Stein~MSS! order @7#; on the other hand,
the transition of its orbital points are successively connec
by the shift mappingw according to the order of iteration
times k. Hence these two aspects describe asymbolic orbit
or transition pattern in the symbolic space. When actin
with the operatorQC* , we obtain a new orbit in the sym
bolic space determined by the parameterlQC* S . This new
orbit has the topological entropyht„f lQC

(x)… in terms of

mappingf 1. However, if inspecting the new orbit in terms o
uQCu times iterationf uQCu, then we observe an interestin
phenomenon, namely, there exists an invariant of the to
logical entropyht„f lQC* S

uQCu (x)…5ht„f lS

1 (x)… under the joint ac-

tions ofQC* and f uQCu. Thus we can define the joint action
of the operatorQC* in the symbolic or parameter space a
the uQCu times mapping off ~i.e., f uQCu! in the interval dy-
5311 © 1998 The American Physical Society
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namics as thesecond topological conjugate transformatio.
Like the first transformation, this second one establishes
other invariant that also preserves the topological entrop
constant. These two kinds of transformations are differe
The first one keeps the topological entropy of the left sup
stable periodic wordQC in the productQC* S, while the
second one keeps that of the right wordS.

One of the aims in this paper is to establish the sec
conjugate transformation. We first find that there areuQCu
clusters of orbital points in the symbolic space exerted by
operatorQC* . Each cluster is self-closed under the mapp
f uQCu and forms an invariant subinterval whose transition p
tern is consistent with or opposite to that of the original or
under mappingf 1. Moreover, this leads to the block diago
nalization of the Stefan transition matrix of compound ma
ping f uQCu and every block is either the same as or the tra
pose ~rotation of 180°! of the Stefan transition matrix o
mappingf 1. Therefore, for all admissible sequences~words!
including the periodic, eventually periodic, coarse-grain
chaotic, and fined-grained chaotic sequences, under the
actions of the operatorQC* and the mappingf uQCu, the dy-
namical system can preserve the invariant of topological
tropy, so the domain of second topological conjugate tra
formation is established in the whole symbolic space of t
letters. It should be emphasized that, first, the infinitely ma
new equivalent classes of iterative maps~`ss* S, SPS2 , and
`ss is the set of all superstable words! can be introduced by
the second transformation, which are different from the in
nitely many first equivalent classes~QC* S2 , QCP`p , and
`p is the set of primitive words! in Ref. @3#. Second, they
form a topological foundation of the renormalization-gro
operator if the joint actions of the operatorQC* and the
mapping f uQCu repeat the same sequence an infinite num
times; this also reflects the essence of the renormaliza
group from the aspect in which the right word and over-o
time mapping play the key roles. Third, the second topolo
cal conjugate transformation provides a topological meth
to discriminate compound words from all words in the ord
topological spaceS2 of two letters; hence it may open up
way to seek the generalized* product for a complex dynami
cal system of more than two letters@6#. Finally, it is inter-
esting to define the inverse operation of the* product on the
basis of the second topological conjugate transformation;
may yield such ideas as fractional period and fractio
renormalization group, which will be discussed in the futu

The paper is organized as follows. In Sec. II we disc
the ordering rule of the orbital points in the symbolic spa
of the compound wordQC* S and thus illustrate the block
diagonalization of the Stefan transition matrix under ma
ping f uQCu. In Sec. III we study the invariant of the secon
topological conjugate transformation. Section IV provide
topological method to discriminate compound words from
admissible words. In Sec. V we briefly illustrate Marko
graphs under the second topological conjugate transfor
tion. Finally, in Sec. VI we discuss the topological found
tion for the renormalization-group operator and the infinite
many classes of topological conjugate iterative maps.

II. CLUSTERING OF ORDER IN SYMBOLIC SPACE

A. The p order of a compound word

The ordering rule of the orbital points in the symbo
space under the action of the operatorQC* is crucial for the
n-
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whole paper. Before studying this we establish some ba
notation of the symbolic dynamics. Consider a unimod
mapping@4# f l : I °I over the intervalI 5@21,1# depending
on a parameterl. The location of the unique maximum off l

on thex axis can be normalized to be the origin of the knea
ing ~maximal! sequence in the symbolic space. For an ar
trary pointx0PI , the setOf(x0)5$ f l

n(x0)%[$xn% denotes a
trajectory with an initial pointx0 . Each trajectory can be
assigned an infinite sequence of three symbolsL, C, andR,

W5w1w2¯ ,

wherewiP$L,C,R% is determined by the rule

wi5H L if xi,0
C if xi50
R if xi.0.

This sequenceW is referred to as a word or an itinerary o
the corresponding trajectory. All admissible words with a
bitrary length s of symbols form a symbolic spaceS2 ,
namely,S25ˆW5P i 51

s wi usPZ1 ,wiP$L,R%‰, or an order
topological spaceS2 if we assign the MSS order to eac
sequenceW in the symbolic space. It is known that a supe
stable periodic word ends with a symbolC @4#, denoted by
WC5w1w2¯wpC. In contrast, a nonsuperstable period
trajectory with periodp is repeated by thep-bit sequence
W5w1w2¯wp . They all are of course finite words and b
long toS2 . Our discussion begins with finite words and th
moves to infinite words.

The symbolic dynamics of a unimodal mappingf l : I °I
is described by the shift operatorw: S2°S2 . Generally
speaking, the mappingf l and shiftw are topologically con-
jugate @4,5#. Therefore, studying the dynamics off l is
equivalent to studying the dynamics of the conjugate shifw
with

w~W!5w2w3¯ .

The ordering of the orbital points$xn% in the coordinate
space is naturally implied by the ordering of the real nu
bers. The ordering between words in the order topolog
spaceS2 is just the MSS orders @7,8#. Moreover, it not
only corresponds to the ordering of real numbers in para
eter space@9,10#, but it also actually reflects the order i
coordinate space of the mappingf l @11#. Therefore, we will
study the MSS order that reflects the ordering between wo
in the coordinate space. In the following, we concentrate
the ordering of the word in the coordinate space.

For any two superstable wordsWC5w1w2¯wmC, m
5uWu, and QC5q1q2¯qnC, n5uQu, the DGP* product
@2# is defined as



t
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QC* WC5q1q2¯qnw1
t~Q!q1q2¯qnw2

t~Q!q1q2¯qn¯q1q2¯qnwm
t~Q!q1q2¯qnC,

wheret is the parity inverse operator defined byLt5R, Rt5L, t(Q)5t if Q contains an odd number ofR’s, and t(Q)5I
~identity operator! if Q contains an even number ofR’s. Now we establish a mappingp: N°N by the MSS order such tha
the shift setw0(WC),w1(WC),...,wm(WC) is ordered as

wpWC~0!~WC!swpWC~1!~WC!s¯swpWC~m!~WC!,

wherep(0)50 because the wordWC is always the kneading maximal word inS2 . It also can be shown thatp(m)51.
$pWC( i )% i 50

i 5uWCu21 is called thep-order relation of the wordWC @11#.
Here we introduce two quantitiesJ̄(S) andFS( i ). TheR parity J̄(S) of a wordS is defined as

J̄~S!5 H 21 if S contains an odd number ofR’s
11 if S contains an even number ofR’s

and the keeping operator of theR parity is defined as

FS~ i !5
uJ̄„wpS~ i !~S!…2 J̄~S!u

2
5H 0

1
if J̄„wpS~ i !~S!…5 J̄~S!, i.e., R parity preserves

if J̄„wpS~ i !~S!…Þ J̄~S!, i.e., R parity inverts.

Due to the order preservation of the operatorQC* @2,4#, the following order relation for the compound wordQC* WC can be
obtained:

QC* WCsQC* wpWC~1!~WC!s¯sQC* wpWC~ j !~WC!s¯sQC* wpWC~m!~WC!, ~1!

where

QC* wpWC~ j !~WC!5q1q2¯qnwpWC~ j !11
t~Q! q1q2¯qn¯q1q2¯qnwm

t~Q!q1q2¯qnC.

In addition, we note thep-order relation of the superstable wordQC,

wpQC~0!~QC!swpQC~1!~QC!s¯swpQC~n!~QC!. ~2!

After the shift operatorwpQC( i ), i 50,1,...,n, acts on the order relation~1! consecutively, we have

wpQC~0!
„QC* WCsQC* wpWC~1!~WC!s¯sQC* wpWC~ j !~WC!s¯sQC* wpWC~m!~WC!…

swpQC~1!
„QC* WCsQC* wpWC~1!~WC!s¯sQC* wpWC~ j !~WC!s¯sQC* wpWC~m!~WC!…

s¯swpQC~n!
„QC* WCsQC* wpWC~1!~WC!s¯sQC* wpWC~ j !~WC!s¯sQC* wpWC~m!~WC!…. ~3!

If wpQC( i )(QC) keeps theR parity of QC, i.e.,FQC( i )50, then the order relations~1! after shiftingwpQC( i ) will be preserved:

wpQC~ i !
„QC* WCsQC* wpWC~1!~WC!s¯sQC* wpWC~ j !~WC!s¯sQC* wpWC~m!~WC!…

⇒wpQC~ i !
„QC* WC)swpQC~ i !~QC* wpWC~1!~WC!…s¯swpQC~ i !

„QC* wpWC~ j !~WC!…

s¯swpQC~ i !
„QC* wpWC~m!~WC!…

⇒wpQC~ i !~QC* WC!swpQC~ i !1uQCu•pWC~1!~QC* WC!s¯swpQC~ i !1uQCu•pWC~ j !~QC* WC!

s¯swpQC~ i !1uQCu•pWC~m!~QC* WC!; ~4a!

if wpQC( i )(QC) inverts theR parity of QC, i.e., FQC( i )51, the order relations~1! after shiftingwpQC( i ) will be completely
inverted as

wpQC~ i !~QC* WCsQC* wpWC~1!~WC!s¯sQC* wpWC~ j !~WC!s¯sQC* wpWC~m!~WC!…

⇒wpQC~ i !1uQCu•pWC~m!~QC* WC!s¯swpQC~ i !1uQCu•pWC~ j !~QC* WC!s¯

swpQC~ i !1uQCu•pWC~1!~QC* WC!swpQC~ i !~QC* WC!. ~4b!

With the order relation~2! of the word QC, we obtain the order relation ofuQCuuWCu orbital points of the compound
superstable wordGC5QC* WC:
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wpGC~0!~GC!s¯swpGC~ j !~GC!s¯swpGC~m!~GC! ~ i 50!

s¯swpGC„i ~m11!…~GC!s¯swpGC„i ~m11!1 j …~GC!s¯swpGC„i ~m11!1m…~GC! ~ i 5 i !

s¯swpGC„n~m11!…~GC!s¯swpGC„n~m11!1 j …~GC!s¯swpGC„~n11!~m11!21…~GC! ~ i 5n!.
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Consequently, for the compound sequenceQC* WC, its p-
order relations of orbital points in the symbolic space
given by the formula

pQC* WC„i ~m11!1 j …5pQC~ i !1~n11!•pWC„FQC~ i !•m

1~21!FQC~ i ! j …, ~5!

where i 50, . . . ,n and j 50, . . . ,m. In an analogous argu
ment, thep-order relation formula for a compound event
ally periodic wordQC* CAB` ~here stringsA andB consist
of L andR! can be obtained as

pQC* CAB`~ iL e1 j !5pQC~ i !1~n11!•pCAB`

3„FQC~ i !•~Le21!

1~21!FQC~ i !
• j …,

whereLe5uCABu, i 50, . . . ,n and j 50, . . . ,Le21.
For other coarse-grained chaotic words with limit

grammatical rules@3# such as the limit of Fibonacci se
quences@12# and the intermittent chaotic sequences@13#, the
operatorQC* can result in a similarp-order relation in the
symbolic space@3,11#. Let F05A, Fi5B, andBsA; then
we can generate the Fibonacci sequences as

F25B% A, F35F2% F1 ,..., Fn5Fn21% Fn22 ,...,

where the addition % @14# is defined as Fn21

% Fn22:5Fn21Rt(Fn21)Fn22 . Thep-order relation of the Fi-
bonacci sequencesFn can be analogously obtained as

pQC* Fn
~ iL Fn

1 j !5pQC~ i !1~n11!•pFn

3„FQC~ i !•~LFn
21!1~21!FQC~ i !

• j …,

where the length of the Fibonacci sequencesFn is given by

LFn
5

1

A5
H F S 11A5

2 D n21

2S 12A5

2 D n21G uAu

1F S 11A5

2 D n21

2S 12A5

2 D n21G uBuJ .

Whenn→`, we obtain the limit of the Fibonacci sequenc
to be the coarse-grained chaos. For the intermittent ch
the p-order relation is similar and will be demonstrated
an example later.

Summing up the above discussion, we can generalize
conclusion from periodic words to aperiodic words and c
otic words. The effect of the operatorQC* on any symbolic
words of a dynamical system will result in an order relati
structure similar to formula~5!.
e

s,

he
-

B. The rule of transition order of a compound word

Thep-order relations~5! demonstrate the cluster structu
of uQCu•uWCu orbital points of the compound wordGC
5QC* WC. Shifting w uQCu on the corresponding symboli
representations of orbital points in symbolic space means
periodic cycling ofp order,

w uQCu: pQC* WC„i ~m11!1 j …

°pQC* WC„i ~m11!1 j …1~n11!

@mod~n11!~m11!#.

First, if the i th cluster keeps theR parity, i.e.,FQC( i )50,
the p-order relation is given as

pQC* WC„i ~m11!1 j …°pQC~ i !1~n11!•pWC~ j !

and for this reason the mappingw uQCu turns into

w uQCu: pQC~ i !1~n11!•pWC~ j !

°pQC~ i !1~n11!•„pWC~ j !11…

@mod~n11!~m11!#. ~6!

It is obvious that the transition order of the iterative mappi
w uQCu is completely the same as the transition order under
mapping in the symbolic space of the wordWC,

w1: pWC~ j !°pWC~ j !11 @mod~m11!#. ~7!

Second, if thei th cluster inverts theR parity, i.e.,FQC( i )
51, thep-order relation would be

pQC* WC„i ~m11!1 j …5pQC~ i !1~n11!•pWC~m2 j !.

It is certain that the transition order of the cluster underw uQCu

will be completely the inverse of Eq.~7!. Therefore, it has
been found that there areuQCu new clusters appearing in
symbolic space, each of them forming a self-closed subin
val, and the transition pattern under the mappingf uQCu in
each cluster agrees with or inverts the original one of m
ping f 1 in symbolic space.

On the basis of the above order clustering, the cen
results are introduced. The transition matrix~i.e., the Stefan
matrix! of uQCu•uWCu orbital points of the compound word
QC* WC under the mappingf uQCu possesses the structure
uQCu diagonal blocks and each block is a submatrix th
would be either the same or the transpose of the transi
matrix of mappingf 1 on uWCu orbital points of the symbolic
space. We will consider the block diagonalization of the S
fan matrix in detail in the next section.
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III. THE SECOND TOPOLOGICAL CONJUGATE
TRANSFORMATION

A. Topological entropy preservation

It has just been shown in the preceding section that
transformation of the orbital points yields the striking clu
tering in the symbolic space of the dynamical system a
thus leads to the block diagonalization of its Stefan mat
although there is aconnection linebetween two adjacen
diagonal blocks@such a line is marked, e.g., by the italic1 in
the matrix~9b!#. It can be easily shown by the simple pro
erty of the determinant from the matrix theory that the
connection lines have no contribution to the eigenvalue
Stefan matrix and so the eigenvalue is determined byuQCu
blocks that have the same eigenvalue as the original St
matrix. We will show examples of the zero contribution
the connection line later. For one-dimensional unimo
maps, the value of the topological entropy can be calcula
from the largest eigenvalue of the Stefan matrix@2#. We can
immediately draw the conclusion that the second topolog
conjugate transformation preserves topological entro
namely,

ht„f lQC* S

uQCu ~x!…5ht„f lS

1 ~x!…, ~8!

where the sequenceS can be extended to all admissible s
quences from finite words, such as the superstable w
WC and their nonsuperstable window words, to infin
words, such as the eventually periodic wordCAB`, limits of
Fibonacci sequences, intermittent chaotic sequences, or
other chaotic sequences of dynamical systems when
lengths of words increase based on limited grammatical r
~or no rules! and approach infinity. Because the joint actio
of the operatorQC* in parameter space and the mappi
f uQCu on the symbolic interval do not change the topologi
property of dynamical systems in an infinite limit, the exte
sion is valid. Here we give some examples to illustrate
transformation~8!.

Example 1: The periodic words QC5RLC and WC
5RLLC. Thep-order relation of the wordRLLC is given
as~1,2,3,0! and its transition pattern underf lRLLC

1 is shown in

Fig. 1~a!. The p-order relation of the wordRLC is ~1,2,0!,
i.e., pQC(0)50, pQC(1)52, pQC(2)51. After ordering
uQCu•uWCu512 orbital points of the wordQC* WC
5RLLRLRRLRRLC, we get its p-order relation

FIG. 1. ~a! Transition pattern of mappingf 1 on the orbital points
of the superstable wordRLLC. ~b! Transition pattern of mapping
f 3 on the orbital points of the compound superstable w
RLC* RLLC, on which a conspicuously clustering of the symbo
space exists.
e
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~1,10,7,4u2,11,8,5u3,6,9,0!. It obviously shows the order rela
tion by formula ~5!, whereas the transition pattern of ma
ping f lRLC* RLLC

uQCu 5 f lRLC* RLLC

3 in Fig. 1~b! illustrates the clus-

tering of symbolic space of the compound wo
RLC* RLLC.

Because wpQC(0)(RLC)5RLC, wpQC(1)(RLC)5C,
wpQC(2)(RLC)5LC, and thus FQC(0)50 and FQC(1)
5FQC(2)51, the first cluster~i.e., the zeroth cluster! keeps
theR parity and the transition pattern underf 3 in the cluster
remains the same as that underf 1 in Fig. 1~a!, while the
other two clusters invert theR parity and the transition pat
tern underf 3 in each of these two clusters completely inve
to that underf 1 in Fig. 1~a!. The corresponding Stefan ma
trices for the transition patterns in Figs. 1~a! and 1~b! are,
respectively,

S~ f lRLLC

1 !5F 0
0
1

1
0
1

0
1
1
G ~9a!

and

S~ f lRLC* RLLC

3 !

53
1 1 1

1 0 0

0 1 0

1 1 1 1 1

1 1 1

1 0 0

0 1 0

1 1 1

0 1 0

0 0 1

1 1 1

4 . ~9b!

It is clear that the Stefan matrix of the transition pattern
Fig. 1~b! is diagonal and in its diagonal direction there ex
three blocks that would be the same as or the transpose o
Stefan matrix of the transition pattern in Fig. 1~a!. Although
there are some other nonzero elements that form a con
tion line between every two adjacent blocks in the diago
of matrix ~9b!, they contribute nothing to the eigenvalue
the matrix~9b!; therefore, both Stefan matrices~9a! and~9b!
have the same topological entropy andht5( f lRLLC

1 )

5ht( f lRLC* RLLC

3 )50.609 377 863 436 0.

Example 2: The eventually periodic word CAB`

5CRLR` and QC5RLC. Thep-order relation of the even
tually periodic wordCRLR` is ~2,0,3,1! and its transition
pattern underf 1 is shown in Fig. 2~a!. By ordering all orbital
points of the compound eventually periodic wo
QC* CAB`5RLCRLLRLR(RLL)`, we obtain itsp-order
relation ~4,10,1,7u5,11,2,8u6,0,9,3!. Noticing the difference
between periodic states and transient states, we have the
separate mapping formulas

d



atterns
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w uQCu: pQC* CAB`~ i !°pQC* CAB`~ i !1uQCu

if pQC* CAB`~ i !,uQCu•uCAu, i.e., transient states turn to other states,

w uQCu: pQC* CAB`~ i !°uQCu•uCAu1$pQC* CAB`~ i !2uQCu•uCAu1uQCu @mod~ uQCu•uBu!#%

if pQC* CAB`~ i !>uQCu•uCAu, i.e., periodic states turn to periodic states.

The transition pattern under mappingf 3 in the symbolic space of the eventually compound periodic wordQC* CAB` is shown
in the Fig. 2~b! and it is clearly clustering in the symbolic space. The corresponding Stefan matrices for the transition p
in Figs. 2~a! and 2~b! are, respectively,

S~ f lCRLR̀

1 !5F 0
0
1

0
0
1

1
1
0
G

and

S~ f lRLC* CRLR̀

3 !53
0 1 1

1 0 0

1 0 0

1 1 1 1 1 1

0 1 1

1 0 0

1 0 0

1 1 1 1 1

0 0 1

0 0 1

1 1 0

4 .
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These examples illustrate the clustering of the order rela
of periodic and aperiodic words in the symbolic space a
that of the corresponding block diagonalization of their S
fan matrices under the second topological conjugate trans
mation. Hence the topological entropy is guara
teed to be invariant andht( f lCRLR̀

1 )5ht( f lRLC* CRLR̀

3 )

50.346 573 590 279 972.
In fact, in terms of the kneading theory by Milnor an

Thurston @5#, the invariant formula~8! can also be mani-
fested. Take an admissible sequenceS5s1s2s3 ..., where
sjP$L,C,R%. One assigns the parity21 to eachR and11
to eachL. If the letterC appears, it is assigned the product
the parities of all the preceding letters. Let« j denote the
parity of lettersj ; then the kneading determinant is defin
by

PS, f 1~t!5 (
n50

`

Qntn, Qn5)
j 51

n

« j .

According to the* product rule@2,11#, the compound word
QC* S follows as

QC* S5~Qs1
t~Q!!~Qs2

t~Q!!~Qs3
t~Q!!¯ .
n
d
-
r-

-

f

Because theDGP* product preserves theR parity @2,4#, i.e.,
the parity of the blockQsj

t(Q) equals that ofsj , J̄(Qsj
t(Q))

5 J̄(sj ), if we start to iterate from the orbital point whos
symbolic sequence is

qi¯quQus1
t~Q!q1¯quQus2

t~Q!q1¯quQus3
t~Q!

¯ ,

i 51, . . . ,uQu,

then the parityu j of the mapping

w uQCu: qi¯quQusj
t~Q!q1¯quQusj 11

t~Q!
¯

°qi¯quQusj 11
t~Q!q1¯quQusj 12

t~Q!
¯ ,

i 51, . . . ,uQu, j 51, . . . ,uSu,

in the symbolic space of the compound wordQC* S is the
same as that ofw1 in the symbolic space of the wordS, u j

[u(Qsj
t(Q))5«(sj ); therefore, the kneading determinant

w uQCu on the compound wordQC* S,
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PQC* S, f uQCu~t!511 (
n51

` S )
j 51

n

u j D tn

511 (
n51

` S )
j 51

n

« j D tn5PS, f 1~t!.

As the topological entropyht is determined by the smalles
positive root tmin of this characteristic polynomialht
52 ln tmin @2,8#, we thus obtain formula~8!.

It is worth noting that there are no restrictions to the
quenceS in the procedure of the above proof; thus formu
~8! is valid for all admissible sequences such as perio
aperiodic, coarse-grained chaotic, or fine-grained chaotic
quences; namely, the second topological conjugate trans
mation preserves the topological entropy for any sequen
SPS2 .

Before ending this subsection we briefly clarify th
coarse-grained chaos@10# in the frame of typeCAB` (B
PS2). The coarse-grained chaos refers to the orbits wit
positive Lyapunov exponent and a finite number of gra
matical rules@3#. The structure of the coarse-grained chao
orbits in phase space is complex, but most of them can
described by the symbolic typeCAB`. They contain many
important orbits such as the homoclinic points@10#, band-
merging points@10#, crisis points @15#, and Misiurewicz
points @16,17#. When the stable set degenerates into a fin
string A and then goes to the unstable setB`, it forms the
homoclinic orbit, for example,RL(RR)`. The merging
points of 2n with 2n21 chaotic bands have the formAB`,
whereA andB stand for (RC)* n with the replacement ofC
by L or R such thatA is odd andB even. For example, the
2→1 merging point isRL(RR)`, the 4→2 merging point is
RLRR(RLRL)`, etc. While the unstable orbits collide wit

FIG. 2. ~a! Transition pattern of mappingf 1 on the orbital points
of the eventually periodic wordCRLR`. ~b! Transition pattern of
mappingf 3 on the orbital points of the compound eventually pe
odic word RLC* CRLR`, on which a conspicuously clustering o
the symbolic space exists.
-

c,
e-
r-

es

a
-
c
e

e

the chaotic attractor abruptly, these crisis points also pos
the common formQ* RL` ~QP`p the set of primitive
words!. Finally, the Misiurewicz points with a preperioduAu
and an eventual perioduBu also belong to the typeCAB`.
We can see that the conclusion of the eventually perio
word in example 2 would be valid for the coarse-grain
chaos here.

B. Examples of chaotic words

We now give further examples on the chaotic orbits
show the power of the previous theoretical results.

Example 3: Intermittent chaotic sequence.We consider
such an intermittent chaotic sequence (RLR)` that appears
just before period 3. The corresponding sequence can
written as@8#

Lk5R@~LRR!kRR#`, k51,2, . . . .

It is obvious that

Lka~LRR!` ;k>1.

For sufficiently largek, these orbits spend most of the tim
traveling around as a period-3 pattern; the symbolic
quence is precisely the so-called intermittency. The result
the second topological conjugate transformation of the in
mittent sequencesLk , k58,12,16,20, are listed in Table I
We can see that the second topological conjugate trans
mation on the intermittent chaotic words preserves topolo
cal entropy.

Example 4: Limit of Fibonacci sequence.Selecting initial
sequencesF05RC and F15RLC and using the addition
operation% in the symbolic spaceS2 introduced by Peng
@14#, the Fibonacci sequences can be formed as

Fn5Fn21% Fn22 ;

for example,

F25RLC% RC[RLRt~RL!RC5RLLRC,

F35RLLRRRLC,

F45RLLRRRLRRLLRC,

F55RLLRRRLRRLLRLRLLRRRLC.

The limit of the seriesFn constructed in this way is a coarse
grained chaotic word. By a numerical calculation, it is im
possible to reach its infinite limit. In order to investigate t
character of the real limit, we could research the finite
quences and focus on what would happened under the
959
089
962
542
TABLE I. Lk5R@(LRR)kRR#`. @Note thatht( f lLk

1 ),ht( f l(RLR)`

1 ).#

k ht~f lLk

1 ! ht~f lRC*Lk

uRCu ! ht~f lRLC*Lk

uRLCu !

8 0.481 209 788 480 959 0.481 209 788 480 959 0.481 209 788 480
12 0.481 211 818 735 089 0.481 211 818 735 089 0.481 211 818 735
16 0.481 211 825 039 962 0.481 211 825 039 962 0.481 211 825 039
20 0.481 211 825 059 542 0.481 211 825 059 542 0.481 211 825 059



595
357
804
804
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TABLE II. Fn5Fn21% Fn22 with F05RC andF15RLC.

k ht~f lFn

1 ! ht~f lRC*Fn

uRCu ! ht~f lRLC*Fn

uRLCu !

6 0.547 665 729 752 595 0.547 665 729 752 595 0.547 665 729 752
7 0.547 665 773 919 357 0.547 665 773 919 357 0.547 665 773 919
8 0.547 665 773 919 804 0.547 665 773 919 804 0.547 665 773 919
9 0.547 665 773 919 804 0.547 665 773 919 804 0.547 665 773 919
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ond topological conjugate transformation. The results for
quencesFn , n56 – 9, are listed in Table II. We assert fro
the results of the finite step sequences that the topolog
entropies of the limit of Fibonacci sequences are preser
under the second topological conjugate transformation.

C. Topological entropy of iterative maps and of the second
topological conjugate transformation

According to the first topological conjugate transform
tion @3#, there exists the following general relation for top
logical entropy under the action of the operatorQC* :

ht~ f lQC* S

1 !5H ht~ f lQC

1 ! if QCÞ~RC!* n, nPZ1

ht~ f lS

1 !/2n if QC5~RC!* n, nPZ1.
~10!

However, it is well known from the ergodic theory@18# that
there exists a formula for calculating the topological entro
of k times iterations of the mapf :

ht~ f l
k !5k•ht~ f l

1!, ~11!

wherekPZ1 . Thus, for the caseQCÞ(RC)* n, we have

ht~ f lQC* S

k !5k•ht~ f lQC* S

1 !5k•ht~ f lQC

1 !.

Therefore, it seems that there exists an apparent incon
tency between formulas~8! and~11!. What mistake does this
paradox result from? We will discuss the problem by anal
ing the concrete examples and show how we should exp
formula ~11! in terms of symbolic dynamics.

Example 5: The periodic sequences WC5RC and QC
5RLC. The transition pattern and Stefan matrix under m
-

al
ed

-

y

is-

-
in

-

ping f 1 on the orbital points of the compound wor
QC* WC5RLLRLCare shown respectively in Fig. 3~a! and
in the expression of the matrix

S~ f lRLC* RC

1 !5F 0
0
0
0
1

0
0
0
1
0

1
0
0
1
0

0
1
0
1
0

0
0
1
1
0

G .

The corresponding largest eigenvalue determined by
equation (12l3)(l22l21)50 is given by lm5(1
1A5)/2. So ht( f lRLC* RC

1 )5ht( f lRLC

1 )50.481 211 825 . . . ,

which obeys formula~10!. On the other hand, the transitio
relationship and Stefan matrix under the mappi
f uRLCu5 f 3 on the same orbital points are shown in Fig. 3~b!
and in the expression of the matrix

S~ f lRLC* RC

3 !5F 1
1
0
0
0

0
1
0
0
0

0
1
1
1
0

0
0
0
1
0

0
0
0
1
1

G .

The corresponding largest eigenvalue determined by
equation (12l)550 is lm51, so ht( f lRLC* RC

3 )5ht( f lRC

1 )

50, which is consistent with formula~8!. However, if the
first preimages and the second preimages of all orbital po
in the dynamical invariant interval are picked out first, th
the mappingf 3 on the union of the original orbital points, th
first preimages, and the second preimages leads to the
sition relationship in Fig. 3~c! and the Stefan matrix is
S~ f lRLC* RC

3 $OføOf 21øOf 22%!5

l

1
1
0
0
0
0
0
0
0
0
1
1
0
0

0
0
1
0
0
0
0
0
0
1
0
0
1
0

0
0
1
0
0
0
0
0
0
1
0
0
1
0

0
0
1
0
0
0
0
0
0
1
0
0
1
0

0
0
1
0
0
0
0
0
0
1
0
0
1
0

0
0
1
0
0
1
1
0
0
1
0
0
1
0

0
0
1
0
1
0
0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1
0
1
0
0
1
0

0
0
1
0
1
0
0
1
0
1
0
0
1
0

0
0
1
1
0
0
0
0
1
1
0
0
1
1

m

.
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The largest eigenvalue of the above Stefan matrix follows
lm5A5125@(11A5)/2#3; therefore,

ht~ f lRLC* RC

3 $OføOf 21øOf 22%!

53ht~ f lRLC* RC

1 $Of%!53ht~ f lRLC

1 $Of%!,

which is consistent with formula~11!. HereOf represents the
set ofuQC* WCu orbital points andOf 21 andOf 22 represent
the sets of the first preimages and second preimages o
original orbital points in the dynamical invariant interva
f lRLC* RC

3 $OføOf 21øOf 22% denotes the mappingf 3 for the

parameterlRLC* RC on the set of pointsOføOf 21øOf 22.
Example 6: The eventually periodic sequenceCRLLR`.

The transition pattern and Stefan matrix under the mapp
f 1 on the point setOf of CRLLR` are shown in Fig. 4~a!
and its Stefan matrix is

S~ f lCRLLR̀

1 !5F 0
0
0
1

1
0
0
1

1
0
0
1

0
1
1
0
G .

The eigenvalue equation isl(l322l22)50. In contrast,
the transition pattern and Stefan matrix under mappingf 2 on
Of is shown in Fig. 4~b! and in the expression

S~ f lCRLLR̀

2 !5F 0
1
1
0

0
1
1
1

0
1
1
1

0
0
0
0
G .

FIG. 3. ~a! Transition pattern of mappingf 1 on the orbital points
of the compound superstable wordRLC* RC. ~b! Transition pattern
of mapping f 3 on the orbital points of the compound supersta
word RLC* RC. ~c! Transition pattern of mappingf 3 on the set of
points OføOf 21øOf 22. Here Of represents the set of orbita
points,Of 2n thenth preimages of orbital points. For the supersta
word RLC* RC, Of5$LLRLC,LC,LRLC,C,RLC,RLLRLC%,
Of 215$RRLC,RC,RLRLC%, and Of 225$LRRLC,LRC,
LRLRLC,RRLRLC,RRC,RRRLC%.
s

all

g

It is easy to see that all these are inappropriate and shoul
given up. With all the preimages ofOf in the dynamical
invariant interval, the mappingf 1 on the set of points
OføOf 21 leads to the transition pattern in Fig. 4~c! and its
Stefan matrix is

S~ f lCRLLR̀

1 $OføOf 21%!53
0
0
0
0
0
0
1

0
0
0
0
0
0
1

1
0
0
0
0
1
0

0
1
0
0
1
0
0

0
0
1
1
0
0
0

0
0
1
1
0
0
0

0
0
1
1
0
0
0

4 .

The corresponding eigenvalue equation is stilll4(l322l
22)50. As a result, the topological entropy is preserved
the first refinement partition of the symbolic space by the
of points Of 21 @19#. The mappingf 2 on the set of points
OføOf 21 leads to the transition pattern in Fig. 4~d! and its
Stefan matrix is

FIG. 4. ~a! Transition pattern of mappingf 1 on the orbital points
of the eventually periodic word CRLLR`. Of

5$LLR`,LR`,CRLLR`,R`,RLLR`%. ~b! Transition pattern of
mapping f 2 on the orbital points of the eventually periodic wor
CRLLR`. Note that the subinterval@LLR`,LR`# is mapped onto a
single point, which is inappropriate.~c! Transition pattern of map-
ping f 1 on the set of pointsOføOf 21 of the eventually periodic
word CRLLR`; hereOf 215$LC,RC,RLR`%. In this case the in-
appropriate iteration does not exist.~d! Transition pattern of map-
ping f 2 on the set of pointsOføOf 21 of the eventually periodic
word CRLLR`.
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S~ f lCRLLR̀

2 $OføOf 21%!53
0
0
1
1
0
0
0

0
0
1
1
0
0
0

0
0
1
1
0
0
1

0
0
1
1
0
0
1

1
1
0
0
1
1
0

1
1
0
0
1
1
0

1
0
0
0
1
1
0

4 .

The corresponding eigenvalue equation is

l4~l324l214l24!5l4@~Al!322Al22#

3@~Al!322Al12#50.

Evidently, the largest eigenvalue is determined by the eq
tion @(Al)322Al22#50, so we obtain the result

ht~ f lCRLLR̀

2 $OføOf 21%!52ht~ f lCRLLR̀

1 $Of%!

52ht~ f lCRLLR̀

1 $OføOf 21%!.

This is what formula~11! means.
Summarizing the above two illustrations, we can expl

itly rewrite formula ~11! as

ht~ f l
k$OføOf 21¯øOf 2~k21!% !5k•ht~ f l

k$Of%!,

whereOf 2n represents thenth preimages of the set of orbita
pointsOf and formula~8! as

ht~ f lQC* S

uQCu $Of%!5ht~ f lS

1 $Of%!.

Then the specious inconsistency vanishes naturally. It
clarified the difference between the above two important f
mulas of topological entropy in the sense of the symbo
dynamics.

IV. A TOPOLOGICAL METHOD OF DISTINGUISHING
COMPOUND WORDS

Given any superstable wordQC and any admissible word
S, we can easily construct a compound wordQC* S. In the
symbolic spaceS2 , there are many more compound wor
than primitive ones@3#. The inverse question arises natura
how to locate compound words or how to decide whethe
word is primitive or compound.

The answer becomes evident when taking advantag
the second topological conjugate transformation. For any
perstable wordGC with the period being factorized a
uGCu5k1•k2 (k1 ,k2PZ1), we inspect the transition patter
of the mappingsf k1, f k2 on its orbital points. If there areki
( i 51 or 2! self-closed clusters under the mappingf ki in the
symbolic space and the transition patterns on these clu
are the same or the inverse of each other, then the word
definitely be factorized in the sense of the DGP* product.
Further, by calculating the topological entropies off 1 and f ki

on the orbital points respectively, sayht( f 1,GC) and
ht( f ki,GC), and using the properties of the devil’s stairca
of the topological entropy@3#, the result follows that the
word GC can be factorized as a word with topological e
tropy ht( f 1,GC) and periodki multiplying by another word
with ht( f ki,GC) and period uGCu/ki if ht( f ki,GC)
a-

-

as
-
c

a

of
u-

rs
an

e

Þht( f 1,GC)/2n; if ht( f ki,GC)5ht( f 1,GC)/2n and ki52n,
then the wordGC is factorized as (RC)* n* S and the wordS
has topological entropyht( f ki,GC) and period uGCu/2n.
Otherwise,GC is primitive. Since the DCP* product is
noncommutative, the factorization of a compound word e
ists uniquely.

Example 7: There are five superstable words with per
6, RLRRRC, RLLRLC, RLLRRC, RLLLRC, and
RLLLLC. The transition patterns under the mappingsf 2, f 3

on these words are respectively shown in Figs. 5~a! and 5~b!.
So only two wordsRLRRRCandRLLRLC are compound
and the rest are primitive. Computing the topological ent
pies yields

ht~ f 1,RLRRRC!5ht~ f 2,RLRRRC!/2

50.240 605 912 529 802 . . . ,

ht~ f 1,RLLRLC!5ht~ f 1,RLC!

50.481 211 825 059 603 . . . ,

ht~ f 3,RLLRLC!5ht~ f 1,RC!50.

We thus have the results that two words can be factori
respectively as

RLRRRC5RC* RLC, RLLRLC5RLC* RC.

In general, if the period of a wordGC can be factorized
as uGCu5k1k2¯kl we watch carefully the transition pat
terns of the mappings

f k1, f k2,...,f kl, f k1k2,...,f k1kl, f k2k3,...,f k2kl,...,

f kl 21kl,...,f k1k2k3,...,f k1k2¯kl

on the orbital points of the wordGC. Then by the above
method we can judge whether or not the wordGC can be
factorized. Therefore, this new topological conjugate tra
formation opens up a way to discriminate compound wo
in the symbolic spaceS2 of two letters and even inS3 of
three letters, etc. Further, it provides a method to seek
generalization of the DGP* product in more complex dy-
namical systems; for instance, by this method the dua*
products in the symbolic spaceS3 of three letters have bee
constructed@6#.

In addition, on the basis of the second topological con
gate transformation we can introduce the inverse opera
of the * product in some sense, by which we have alrea
shown that the method can be used to separate a prim
word from the compound words. Here we further conjectu
that the inverse operation of the* product may generalize th
concept of noncompound words. We now attempt to exte
the concept of period such that a word may have a fractio
period @20#. Let WC be a superstable periodic word wit
perioduWCu5m. If the transition pattern of compound map
ping f n on the orbital points ofWC is appropriate and its
topological entropy is calculated to beh* , then we can de-
fine a word ~state! with fractional period, namely,f l*

n (x)
5 f l*

m (x), wherem is prime ton, the parameterl* is fixed,
and this word has a topological entropy valueh* . When
changing the value of its parameter according to the* prod-
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FIG. 5. ~a! Transition pattern of mappingf 2 on the orbital points of superstable wordsRLRRRC, RLLRLC, RLLRRC, RLLLRC, and
RLLLLC. Only in the symbolic space of the wordRLRRRCdoes clustering of the transition order exist.~b! Transition pattern of mapping
f 3 on the orbital points of superstable wordsRLRRRC, RLLRLC, RLLRRC, RLLLRC, andRLLLLC. Only in the symbolic space of the
word RLLRLCdoes clustering of the transition order exist.
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uct rule, we may use the inverse operation of the* product to
seek a new equal topological entropy class with a fractio
period. If this is the case, there may exist a fraction
renormalization-group equation such as gn(x)
5agm(x/a) @20#. This may be an interesting type of dy
namical word~state!.

V. MARKOV GRAPHS UNDER THE SECOND
TOPOLOGICAL CONJUGATE TRANSFORMATION

The Stefan matrices above are explained as the transit
of intervals. Moreover, it is very useful to explain them
the Markov graphs of the transitions of points~states!. From
the graph theory, the transitions of both intervals and po
are equivalent in the sense of duality. However, we can
derstand much more information from Markov graph such
the symbolic kinetic analysis@21#, the stationary measure o
the topological Markov chain@22#, and the theoretical analy
sis of formal language of finite automata from the period
eventually periodic, and aperiodic unimodal maps@23–25#.
Here we restrict our discussion to the second topolog
conjugate transformation by the Markov graph. An importa
feature is that the probability measure of dynamical syste
in the Markov graph will be expressed more clearly than
the graph of interval transitions. We choose the examp
from above to compare these two kinds of graphs.

A. The periodic orbit

As we know, it is very easy to draw the Markov grap
from the Stefan matrix of the finite periodic orbit. Thus th
al
l

ns

ts
n-
s

,

al
t
s

n
es

interval of ‘‘mass’’ points in the graph of interval transition
would be shrunk into a point that supplies or receives
transfer of mass points and these two kinds of points
called the source and sink, respectively. The Markov gr
of the periodic orbitRLRRRCof the mapf 1 is drawn in Fig.
6~a! and that of the mapf 2 in Fig. 6~c!. We can see that thes
two Markov graphs have the same transition pattern, ex
the pointRRRR, which is a source to supply the same tw
subgraphs with mass points in Fig. 6~c!. The pointRRRR
only as the source does not contribute to the topolog
entropy. In fact, only such points that are not only source
also sink may possibly contribute to the topological entro

B. The eventually periodic orbit

The eventually periodic orbits are the simplest example
coarse-grained chaos. They contain many important or
such as the homoclinic points, crisis points, and ba
merging points and have the common symbolic descrip
CAB`. We adopt one of the typical examples discuss
above~example 2! @Figs. 2~a! and 2~b!#. The Markov graphs
of the eventually periodic orbitCAB`5CRLR` and the
compound wordRLC* CRLR`5RLCRLLRLR(RLL)` are
drawn in Figs. 7~a! and 7~b!. Of course, the conclusion is th
same as the previous periodic orbit, namely, all three Mar
subgraphs in Fig. 7~b! are the same as Fig. 7~a!, except the
two sources fromd5@7,5# andh5@8,6#.

In order to understand completely, we interpret this ag
with the analysis of symbolic kinematics@21#. For the even-
tually periodic orbitCRLR` of the unimodal mapf 1 the rule
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of transition of orbital points in the Markov graph is given
Ref. @21#. Carrying out the transition one time between tw
intervals with different masses~namely, the interval lengths!,
we can calculate its transition probability by the interv
lengths. If we suppose that the interval length of each tr
sition point is equal to one, then the Stefan matrix can
interpreted as a topological Markov chain. If we take succ
sively the inverse mapsf 21, f 22,...,f 2n, then the entropy of

FIG. 6. ~a! Markov graph of the compound superstable wo
RC* RLC5RLRRRCof the mapf 1. The intervals are denoted b
a5LR, b5RRLR, c5RRRR, d5RRRLR, and e5RLR. ~b!
Markov graph of the periodic orbitRLC of the mapf 1. The inter-
vals are denoted bya5LR and b5R. ~c! Markov graph of the
periodic orbitRLRRRCof the mapf 2, which is a series connectin
the graph in~b!. The intervals are the same as in~a!.

FIG. 7. ~a! Markov graph of the eventually periodic wor
CRLR` of the mapf 1. The intervals are denoted bya5@2,0#, b
5@0,3#, andc5@3,1# according to Fig. 2~a!. ~b! Markov graph of
the eventually periodic wordRLC* CRLR` of the map f 3. The
intervals are denoted bya5@4,10#, b5@10,1#, c5@1,7#, d
5@7,5#, e5@5,11#, f 5@11,2#, g5@2,8#, h5@8,6#, i 5@6,0#, j
5@0,9#, andk5@9,3# according to Fig. 2~b!.
l
-

e
s-

the topological Markov chain of the one-sided shift can
easily obtained as@22# m52( i , j pj Pi j ln Pij , where the in-
variant probabilitypj5( i pi Pi j , the transition probabilities
Pi j 5si j zj /zil(S), l~S! is the maximal positive eigenvalu
of the Stefan matrix off 2n, andZ5$zi% is the corresponding
eigenvector. Moreover, other coarse-grained chaotic
quences discussed in Sec. III B would have the same con
sion in the Markov graphs when we approach the limit of
infinite sequence from the finite one.

Summing up the analysis of Markov graphs in this se
tion, we have that under the second topological conjug
transformation, theuQCu subgraphs of the mapf lQC* S

uQCu of a

compound wordQC* S are the same as the graph of the m
f lS

of the wordS except for the sources, which do not co

tribute to the topological entropy, and bothf lQC* S

uQCu and f lS

have the same probability measure of the transition w
maximal entropy for the topological Markov chain.

Finally, we end this section with a brief discussion abo
automata. If the finite automatonS is deduced by the Stefa
matrix of the symbolic sequenceSC, then the Stefan matrix
of the symbolic sequenceQC* S under the second topologi
cal conjugate transformation will generate the finite autom
ton S8, which is in a series ofuQCu finite automataS con-
nected byuQu sources. BothS andS8 are equivalent in the
grammatical rule of formal language theory@26#. This is also
one way of constructing the automata with equal topologi
entropy.

VI. TOPOLOGICAL CONJUGATE CLASS
OF ITERATIVE MAPS

A. Infinite number of topological conjugate classes
of iterative maps

We already know that the invariant of the topological e
tropy by the* product ht( f lQC* W

)5ht( f lQC
) leads to the

first topological conjugate class, which is labeled by ea
primitive word QCP`p ~the set of primitive words!,
namely, a step of the devil’s staircase of topological entro
on the parametric axis@3#. Is it possible to establish anothe
topological conjugate relationship between mappingsf 1 and
f n, nPZ1? The answer is yes. Analogously, the invariant
the second topological conjugate relationsh
ht( f lQC* S

uQCu $Of%)5ht( f lS

1 $Of%) can also give rise to a topo

logical conjugate class between the mappingsf 1 and f n.
Given the mappingf lS

1 with the parameterlS represented by

an arbitrary admissible sequenceS in the unimodal map, we
can choose the appropriate parameterlQC* S with uQCu
5n. According to the second topological conjugate transf
mation, the mappingsf lS

1 and f lQC* S

n are topologically con-

jugate in the symbolic space. Therefore, in terms of top
ogy, the physical orbit ofS in the symbolic space underf lS

1

is topologically the same as that on each cluster ofQC* S in
the symbolic space underf lQC* S

n . When the admissible se

quenceS is fixed, which definitely belongs to one of th
steps of the devil’s staircase of the topological entropy on
parametric axis@3,27# ~say,SPPC* @L`,RL`#! or one of the
single points of chaos, if the left wordQC runs over the set
`ss of all admissible superstable words~namely,QC takes
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from all the infinitely many steps of the entropy staircas!,
then a second topological conjugate class is formed fo
concreteS. Because the set of the first topological conjug
classes has cardinal number:1 , a second topological conju
gate class also has cardinal number:1 . In addition, in view
of the invariance of the first topological conjugate class,
admissible sequenceS can take over sequences from~a! one
of the steps of the entropy staircase that contains infini
many admissible sequences and corresponds to a first t
logical conjugate class with cardinal number:1 or ~b! the
infinitely many steps of the entropy staircase or the infinit
many single points of chaos. Thus all the infinitely ma
second topological conjugate classes form a set. It is obv
that the cardinal number of the set of the second topolog
conjugate classes should also be the same as that of the
the first topological conjugate classes~namely,:1!.

Therefore, it is clear that these two kinds of topologic
conjugate classes reflect an entropic invariant of the s
bolic dynamics in two different ways. As far as the inva
ance of topological entropy is concerned, the motion of
dynamical systems is measured with the same criterionf 1 in
the first topological conjugate class, while the motion of d
ferent dynamical systems in the second topological conjug
class is measured with different criteriaf uQCu. However, the
second equivalent class has a noticeable effect on explo
the metric characteristics. The method of measuring differ
objects by different criteria and thus seeking the invarian
between is effective for studying characteristics or featu
of chaos such as the self-similarity. It becomes evident in
following that the second topological conjugate transform
tion supplies the topological foundation for th
renormalization-group operator.

B. Topological foundation of the renormalization-group
operator

It is well known that the renormalization-group operat
in the Feigenbaum bifurcation processes (QC)* n, n
51,2, . . . , is@1,8#

T fl~QC!* n~x!5a f lQC* ~QC!* n

uQCu ~x/a!.
in

.
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In terms of topology, this operator is equivalent to the seco
topological conjugate transformation in the symbolic spa
at the parameterl (QC)* n. Owing to formula~8!, it leads to

ht~ f lQC
!5ht~ f lQC* QC

uQCu !5¯5ht~ f l~QC!* n
* QC

u~QC!* nu !

and in particular for the accumulation pointsl`5l (QC)* `.

ht~glQC* ~QC!* `

uQCu !5ht~gl~QC!* `

1 !,

whereg(x)5gl`
(x)5 f l(QC)* `

u(QC)* `u(x) are the fixed-point func-

tions of the renormalization operatorT. That is, the second
topological conjugate transformation guarantees that
Feigenbaum bifurcation processes preserve topological
tropy @3#. The fixed-point functionsg(x) of the operatorT at
the accumulation pointsl` , are also the fixed-point func
tions of the second topological conjugate transformation
g1 andguQCu are conjugate at the same accumulation poi
l` . Thus the second topological conjugate transformat
supplies a topological foundation of Feigenbaum’s univ
salities and a sharp topological frame in studying the tran
tions to chaos in Feigenbaum’s scenario.

Knowledge of the topological characteristics would fu
ther the exploration of the metric regularities@27# of the
dynamical systems. The second topological conjugate tra
formation will reveal some new regularities for the invaria
distribution of the phase space and for the metric entropy
particular for the Lyapunov exponent@28#. We believe that
this topological framework for the research of the met
characteristics in the chaotic dynamical systems would
significant in the future.
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