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Second topological conjugate transformation in symbolic dynamics
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A topological conjugate transformation defined as the joint actions of both the Derrida-Gervois-Pomeau
(DGP) * product operatioQ C* in the symbolic spacéor its corresponding parameter spaaed the mapping
£1QCl in the symbolic dynamics of the interval, which with respect to the first topological conjugate transfor-
mation (the merely action oQC+) is called the second topological conjugate transformation, is found. It
reveals conspicuously clustering of the orbital points and preserves the topological entropy of the dynamical
systems. In analogy to the first topological conjugate transformation, there exist also infinitely many second
topological conjugate maps. The second topological conjugate transformation provides a topological founda-
tion for Feigenbaum’sgJ. Stat. Phys19, 25 (1978; 21, 669 (1979] universalities and a basic topological
method for discriminating the compound words in the sense of the B@®duct in the symbolic space, of
two letters. Therefore it opens up a way to seek the generatizaduct for the more complex dynamical
systems[S1063-651X98)06405-9

PACS numbd(s): 05.45+Db, 03.20+i

I. INTRODUCTION constant, we call the operatid@C*: 3,—3, in the sym-
bolic spacethe first topological conjugate transformation
Simple one-dimensional iterative systems display a rictfrom the viewpoint of the parameter shil‘tt(foC*S(x))
connotation [1]. Many studies reveal that the Derrida- =hy(f, (X)) for QC#(RC)*", Se3,, whereX, is the set
Gervois-PomeatDGP) » product[2] plays a key role in the formengy all the admissible words of two lettd3. It is
understanding of the regularities in the chaotic phenomenﬁnportant that the main[(QC)*" and ass;)ciated

aroused by nonlinearitiel3]. It explains the self-similarity (QC)*"+ S] Feigenbaum universalities are confined within
and self-embedding phenomena therein and provides a rigog : . i
he equal topological entropy class. Accordingly, the opera

ous symbolic formalism for expounding the invariance 01:tor QC+ reveals the vigorous global regularities and the or-
dynamical systems. Therefore, further research on the char; g g 9

- ) . der structures in the chaotic phenomena. In this way, the
acteristics of the DGP produ€C* becomes increasingly . .
) . . . . DGP* product is a fundamental tool to study the topological
important in exploring the regularities of nonlinear complex

. . nd metri haviors in the unimodal m n her piece-
phenomena. First of allQ C+ allows us to describe the rela- \?vi:e rr?c:ngtzieamgpﬁgs 6]t € unimodal maps and other piece
tion between two kneading invariants of two different maps The mapping is a basic method to study the behavior of

related by the renormalization transformatipfi. Second, a dynamical system. For a perigdsystem, the mapping can
QCx is a symbolic representation of Feigenbaum period- y y ) b y ; PpIng

p-tupling bifurcation processeie., the kneading sequence show its periodicity byp times iterations: fP(x)=x. For an
series QC)*". n=12,.] and the universal constants arbitrary orbit of a dynamical system represented by a sym-

. . bolic sequencgword) S with parameter\g, on the one
o(QC) and .a(QC) charactgrlze the contraction arld self- hand, the coordinatésr positiong of its orbital points in the
embedding in the parametric space under the action of the

. . il k=gl
operatorQ C+, while the renormalization group can be com- symbolic space are labeled by the shift operat . Fi-o
prehended as a result of continuously act@* in the (here |S| denotes the length of wor@) according to the

symbolic space of ts corresponding parameric space of g 2GR ESIEE SIS T Er L B e B e
dynamical systems. Third, recent resUl show that for P y

. : by the shift mappinge according to the order of iteration
any superstable kneading sequer@€, the subinterval . . :
QC*[L*,RL"] corresponds to the entire interjdl”,RL"] timesk. Hence these two aspects describgymbolic orbit

o , o . or transition patternin the symbolic space. When acting
under a one to-one ”?apP”‘@C* .a.nd itis a 1;5,1(Q) times with the operatoiQC+, we obtain a new orbit in the sym-
contraction of the entire interval; §C+# (RC)*", then the bolic space determined by the paramex This new
subintervalQC+[L*,RL*] forms an equal topological en- P y P ®cxs-

tropy class with a topological entrom{(fxqc(x)) that ex- orbit has the topological entropyt(fAQc(x)) in terms of

. - ¢ appingf!. However, if inspecting the new orbit in terms of
presses a step in the entropy devil's staircase. Because t%q times iterationf/2%l, then we observe an interesting

: . )
action of the operatoQC+ keeps the topological entropy phenomenon, namely, there exists an invariant of the topo-

logical entropyh, (fI2° (x))= hi(fx(x)) under the joint ac-

A
QCxS
*Electronic address: slpeng@ynu.edu.cn tions of QC* andf/Q¢l. Thus we can define the joint actions
"Electronic address: xszhang@ynu.edu.cn of the operatoQC+ in the symbolic or parameter space and
*Mailing address. the |QC| times mapping of (i.e., /¢l in the interval dy-
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namics as theecond topological conjugate transformation whole paper. Before studying this we establish some basic
Like the first transformation, this second one establishes amotation of the symbolic dynamics. Consider a unimodal
other invariant that also preserves the topological entropy agapping[4] f, : 11 over the interval =[ — 1,1] depending
constant. These two kinds of transformations are differenty, 5 parametex. The location of the unique maximum bf

The first one keeps the topological entropy of the left Supery, ey axis can be normalized to be the origin of the knead-
stable periodic wordQC in the productQC+S, while the ing (maxima) sequence in the symbolic space. For an arbi-

second one keeps that of the right w@&d . - -
One of the aims in this paper is to establish the secondf@y PoiNtxoe I, the setOy(xo) ={f}(xo)}={xn} denotes a

conjugate transformation. We first find that there HpeC| trajectory with an initial pointxy,. Each trajectory can be
clusters of orbital points in the symbolic space exerted by th@ssigned an infinite sequence of three symhol€, andR,
operatorQCx. Each cluster is self-closed under the mapping
f19¢ and forms an invariant subinterval whose transition pat-
tern is consistent with or opposite to that of the original orbit W= Wi Wor - -

) - - W2
under mapping -. Moreover, this leads to the block diago-
nalization of the Stefan transition matrix of compound map-
ping Q¢ and every block is either the same as or the trans-
pose (rotation of 180F of the Stefan transition matrix of wherew;e{L,C,R} is determined by the rule
mappingf!. Therefore, for all admissible sequendesmrds
including the periodic, eventually periodic, coarse-grained
chaotic, and fined-grained chaotic sequences, under the joint L if x<0
actions of the operatdC+* and the mapping/?©, the dy- _lc i x|<=O
namical system can preserve the invariant of topological en- Wi= .o
tropy, so the domain of second topological conjugate trans- R if x>0.
formation is established in the whole symbolic space of two
letters. It should be emphasized that, first, the infinitely many
new equivalent classes of iterative mdps+ S, Se¥,, and  This sequencdV is referred to as a word or an itinerary of
@< is the set of all superstable wopdsan be introduced by the corresponding trajectory. All admissible words with ar-
the second transformation, which are different from the infi-bitrary length s of symbols form a symbolic spack,,
nitely many first equivalent classé®C+X,, QCep,, and  namely,3,={W=1I°_,w;|se Z, ,w;e{L,R}}, or an order
9 is the set of primitive wordsin Ref.[3]. Second, they gpological spaces, if we assign the MSS order to each
form a topological foundation of the renormallzatlon—groupSequencw in the symbolic space. It is known that a super-

operator if the joint actions of the operat@C+ and the I ;
mappingf‘QC‘ repeat the same sequence an infinite numbe?table periodic word ends with a symbil[4], denoted by

times: this also reflects the essence of the renormalizatiof/ ©=WiWz'-"W,C. In contrast, a nonsuperstable periodic

group from the aspect in which the right word and over-one{rajéctory with periodp is repeated by the-bit sequence
time mapping play the key roles. Third, the second topologi\W=W1W,'--w,,. They all are of course finite words and be-
cal conjugate transformation provides a topological methodong to2.,. Our discussion begins with finite words and then
to discriminate compound words from all words in the ordermoves to infinite words.

topological spac&., of two letters; hence it may open up a  The symbolic dynamics of a unimodal mappihg: 1+
way to seek the generalizedoroduct for a complex dynami- is described by the shift operater. 3,—3,. Generally
cal system of more than two lettef§]. Finally, it is inter-  speaking, the mappinfy, and shifte are topologically con-
esting to define the inverse operation of thproduct on the  jygate [4,5]. Therefore, studying the dynamics df is

basis of the second topological conjugate transformation; thigguivalent to studying the dynamics of the conjugate shift
may yield such ideas as fractional period and fractionaly;in

renormalization group, which will be discussed in the future.
The paper is organized as follows. In Sec. Il we discuss
the ordering rule of the orbital points in the symbolic space
of the compound word@C* S and thus illustrate the block
diagngéilzation of the Stefan transition matrix under map-
ping f'~*~. In Sec. lll we study the invariant of the second : . . . .
topological conjugate transformation. Section IV provides aThe or_derlng of the or bital pointéx,} N the coordinate
topological method to discriminate compound words from allSPace 1s natural_ly implied by the or(_jerlng of the real num-
admissible words. In Sec. V we briefly illustrate Markov bers. The_ o_rdermg between words in the order to_pologlcal
graphs under the second topological conjugate transform&Pace2 is just the MSS order- [7,8]. Moreover, it not
tion. Finally, in Sec. VI we discuss the topological founda-©Nly corresponds to the ordering of real numbers in param-

tion for the renormalization-group operator and the infinitelyeter spacg9,10], but it also actually reflects the order in

e(W)=wwg - .

many classes of topological conjugate iterative maps. coordinate space of the mappifig[11]. Therefore, we will
study the MSS order that reflects the ordering between words
Il. CLUSTERING OF ORDER IN SYMBOLIC SPACE in the coordinate space. In the following, we concentrate on

the ordering of the word in the coordinate space.
For any two superstable word&/C=ww,--w,C, m
The ordering rule of the orbital points in the symbolic =|W|, andQC=q;0, --q,C, n=|Q|, the DGP* product
space under the action of the operaf@€* is crucial for the [2] is defined as

A. The 7 order of a compound word
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QC*WC=q0y - AaW{ ¥ d30y - -UnW5 V0102 -Gy UGz - GnWi 20102 -G C,

wheret is the parity inverse operator defined b{=R, R'=L, t(Q)=t if Q contains an odd number &'s, andt(Q)=I
(identity operatorif Q contains an even number Bfs. Now we establish a mapping: N—N by the MSS order such that
the shift sete®(WC), e (WC),...,0™(WC) is ordered as

@™ (WC)> p™WcD(WC)>---> o ™WcM(WC),

where(0)=0 because the word/C is always the kneading maximal word }y,. It also can be shown that(m)=1.
{mwc(i) 2V 1 is called therr-order relation of the wordVC [11].
Here we introduce two quantitieS) and®(i). TheR parity J(S) of a wordS is defined as

—1 if S contains an odd number dR’'s

JS=1 41 if S contains an even number d¥'s

and the keeping operator of tiieparity is defined as

Duli) = 13(e™(S)) = J(9)] o if Z(gows(i)(S))=£S), i.e., R parity preserves
s()= 2 |1 J(e™V(9)#I(S), i.e., R parity inverts.

Due to the order preservation of the operd@€* [2,4], the following order relation for the compound wogdC+ W C can be
obtained:

QC*WC>QCx p™WeD(WC)>--->QCx p™Wcl)(WC) > -->QCx o™wcM(WC), (1)
where
QCx <PﬂW°(j>(WC)ZQ1Q2'"QnWtéV?,)C(j)Arlqmz'"Qn'"Q1Q2‘"QnW%Q)QNZ“QnC-
In addition, we note ther-order relation of the superstable wo@iC,
¢medD(QC)> e M(QC) >+ > ¢ (QC). l
After the shift operatogp™ec()| i=0,1,...n, acts on the order relatiofl) consecutively, we have
¢™cO(QC*WC>QCH ¢™WD(WC)>--->QC* o™ WD(WC)>--->QCx* p™Wc™(\WC))
> @™ (QC* WC>QCx ¢™WID(WC)>--->QCx oW (WC)>--->QCx ¢™WM(WC))
> o> TeM(QC* WC>QC* oW D(WC) >+ - ->QCx* oW (WC) > - ->>QCx* p™WcM(WC)). (3)
If ¢™c)(QC) keeps theR parity of QC, i.e.,®oc(i) =0, then the order relatior(4) after shiftinge™ec®) will be preserved:
@™ec(QCxWC>QCH "W H(WC) > - >QC* W) (WC) > -->QC* W™ (WC))
= ¢mec)(QCrWC) > ¢mec)(QCx ™WeD (W C))> > pac(QCx pwell(WO))
> > T (QCx WM (WC))
= ¢™c)(QC*WC) > pmec)*IQCl mwc)(QCxr WC) >+ - - > pTac) *1QC- 7w (Q Cx WC)
>+ > @mcD+1QC mwcM (Q Cx W C): (43

if ¢7ec()(QC) inverts theR parity of QC, i.e., ®qc(i)=1, the order relationl) after shiftinge™ec™ will be completely
inverted as

pac)(QCr WC>QCx gD (WE) >+ > QCr g™l (WC) > > QCr ™M (WC))
= @7oc(+1QC TwcM(QCx WC) > - - > p7oc() +1QC mwc)(QCx WC) >+ - -
> @moc) 1Rl mweM(QCx WC) > o™ (QC+WC). (4b)

With the order relation(2) of the word QC, we obtain the order relation dfQC||WC]| orbital points of the compound
superstable wor@6C=QC*WC:
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eTecO(GC)>+->Tec)(GC)>+-->ecM(GC) (i=0)

>...>(Pfrec(i(m+l))(GC)>...>¢ﬂec(i(m+l)+J)(GC)>...>(P1'r(3c(i(m+1)+m)(GC)

>. ..>(P7Tec(n(m+1))(GC)>. ">(,D7TGC(n(m+l)+j)(GC)>' ">QDWGC((n+1)(m+1>_1)(GC)

Consequently, for the compound sequef@&*WC, its 7-

(i=1)
(i=n).

B. The rule of transition order of a compound word

order relations of orbital points in the symbolic space areé g order relationg5) demonstrate the cluster structure

given by the formula

mocswcli(M+1)+j)=moc(i) +(nN+1) myw(Pgcli)-m
+(—1)Pech), 6)

wherei=0,...nhandj=0,..

ally periodic wordQC* CAB” (here stringA andB consist
of L andR) can be obtained as

Tackcap(ilet ) =moc(i)+(N+1)- mcap
X (Poc(i)-(Le—1)
+(—1)%acl. j,

whereL.=|CAB|, i=0,...handj=0,... L.—1.

For other coarse-grained chaotic words with limited
grammatical ruleq3] such as the limit of Fibonacci se-

guenceg12] and the intermittent chaotic sequen€#3], the
operatorQC+ can result in a similasr-order relation in the
symbolic spacg3,11]. Let Fy=A, F;=B, andB>A; then
we can generate the Fibonacci sequences as
FZZB@A, F3:F2@F1,..., Fn:Fn_l@Fn_z,...,
where the addition @ [14] is defined as F,_;
&F,_,=F,_1R{Fn-DF _, Them-order relation of the Fi-
bonacci sequencds,, can be analogously obtained as

Texk,(ILe t1)=7oc(i) +(n+1)- 7
X (Pqc(i)- (Lg,—1)+(—1)Pech). ),

where the length of the Fibonacci sequenEgss given by

L 1 1445\ 1 (1—\/5)”‘1 A

Fn_\/g 2 - 2 | |
1+y5\""* [1-5\"*!

112 2 LUE

Whenn—oo, we obtain the limit of the Fibonacci sequences

.,m. In an analogous argu-
ment, them-order relation formula for a compound eventu-

of |QC|-|W(C| orbital points of the compound wor@C
=QC*WC. Shifting ¢/°¢ on the corresponding symbolic
representations of orbital points in symbolic space means the
periodic cycling of7 order,

@lQcl: mocxwcli(m+1)+j)
= mocewc(i(M+1)+j)+(n+1)
[modn+1)(m+1)].

First, if theith cluster keeps th® parity, i.e.,®oc(i) =0,
the 7r-order relation is given as

Tockwc(i(M+1)+ )= moc(i) +(n+1)- mywc())
and for this reason the mappirg?° turns into
IQcl; moc(i) +(n+1)- mwe(])

= moc(i)+(n+1) - (mwe(j)+1)

¢

[modn+1)(m+1)]. (6

It is obvious that the transition order of the iterative mapping
qo‘Qq is completely the same as the transition order under the
mapping in the symbolic space of the woniC,

o mwe(i)=mwd()+1 [modm+1)].  (7)
Second, if theith cluster inverts theR parity, i.e.,®qc(i)
=1, thesr-order relation would be

mocxwc(i(M+1)+j)=mqc(i)+(n+ 1) mye(m—j).

It is certain that the transition order of the cluster unqcl@CI
will be completely the inverse of Ed7). Therefore, it has
been found that there aj€®C| new clusters appearing in
symbolic space, each of them forming a self-closed subinter-
val, and the transition pattern under the mappfh‘@;CI in
each cluster agrees with or inverts the original one of map-
ping f! in symbolic space.

On the basis of the above order clustering, the central

to be the coarse-grained chaos. For the intermittent chaoggsults are introduced. The transition matfie., the Stefan
the m-order relation is similar and will be demonstrated by matrix) of |QC|-|WC| orbital points of the compound word

an example later.

QC+WC under the mappingIQCI possesses the structure of

Summing up the above discussion, we can generalize th€C| diagonal blocks and each block is a submatrix that
conclusion from periodic words to aperiodic words and chawould be either the same or the transpose of the transition

otic words. The effect of the operatQC* on any symbolic

matrix of mappingf! on|WC| orbital points of the symbolic

words of a dynamical system will result in an order relationspace. We will consider the block diagonalization of the Ste-

structure similar to formul#5b).

fan matrix in detail in the next section.
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(1,10,7,42,11,8,%3,6,9,0. It obviously shows the order rela-
tion b?/ formula(5), whereas the transition pattern of map-
Q

! 2 3 0 . C‘ _ 3 . . . _
v\_‘/’/ ping fi- " o= NalaeriLe I Fig. 1(b) illustrates the clus

tering of symbolic space of the compound word
(@) RLC*RLLC.
e s e B o s e M= E= 2N, Because ¢moc¥(RLC)=RLC, ¢7ec(RLC)=C,
A S S G S S S A SRR ¢™c@(RLC)=LC, and thus®oc(0)=0 and ®qc(1)
(b) =®dqc(2)=1, the first clustefi.e., the zeroth clustgkeeps
the R parity and the transition pattern underin the cluster
FIG. 1. (8 Transition pattern of mappintf on the orbital points  remains the same as that undérin Fig. 1(a), while the
of the superstable worBLLC. (b) Transition pattern of mapping other two clusters invert thR parity and the transition pat-
f* on the orbital points of the compound superstable wordiern yunderf? in each of these two clusters completely inverts
RLC*RL!_C, on which a conspicuously clustering of the symbolic {5 that underf? in Fig. 1(a). The corresponding Stefan ma-
space exists. trices for the transition patterns in Figs(al and 1b) are,
respectively,

lll. THE SECOND TOPOLOGICAL CONJUGATE
TRANSFORMATION
(93

A. Topological entropy preservation ARLLC

w

N

Il
SN eNe)
B, O R
B RO

It has just been shown in the preceding section that the
transformation of the orbital points yields the striking clus- 51
tering in the symbolic space of the dynamical system and
thus leads to the block diagonalization of its Stefan matrix,_ .5
although there is aonnection linebetween two adjacent S(f)‘RLC*RLLC)
diagonal blockgsuch a line is marked, e.g., by the italién -1 1
the matrix(9b)]. It can be easily shown by the simple prop-
erty of the determinant from the matrix theory that these 10
connection lines have no contribution to the eigenvalue of 0 1
Stefan matrix and so the eigenvalue is determined®|
blocks that have the same eigenvalue as the original Stefan
matrix. We will show examples of the zero contribution of
the connection line later. For one-dimensional unimodal
maps, the value of the topological entropy can be calculated
from the largest eigenvalue of the Stefan maf@k We can
immediately draw the conclusion that the second topological
conjugate transformation preserves topological entropy,
namely,

P O O

(9b)

O r P R
P O P R
P O O P R

1
0
0
1

R, O K
A =)

h(f12% (0))=h(f} (), ®

where the sequenc® can be extended to all admissible se- ] N )
quences from finite words, such as the superstable wordé iS clear that the Stefan matrix of the transition pattern in

WC and their nonsuperstable window words, to infinite Fig. 1(b) is diagonal and in its diagonal direction there exist
words, such as the eventually periodic W@ B, limits of three blocks that would be the same as or the transpose of the
Fibonacci sequences, intermittent chaotic sequences, or amyfefan matrix of the transition pattern in Figal Although
other chaotic sequences of dynamical systems when tH@ere are some other nonzero elements that form a connec-

lengths of words increase based on limited grammatical ruleion line between every two adjacent blocks in the diagonal
(or no ruleg and approach infinity. Because the joint actions©f matrix (9b), they contribute nothing to the eigenvalue of
of the operatorQCx in parameter space and the mappingthe matrix(9b); therefore, both Stefan matricé3a) and(9b)

H _r¢1
fI2Cl on the symbolic interval do not change the topologicalh@ve the same topological entropy arft=(fy_ )

property of dynamical systems in an infinite limit, the exten-= ht(ffRLC*RLLC) =0.609 377 863 436 O.
sion is valid. Here we give some examples to illustrate the  pyample 2: The eventually periodic word CAB
transformation(8). =CRLR’ and QC=RLC. The-order relation of the even-

Example 1: The periodic words Q€RLC and WC  ya)ly periodic wordCRLR is (2,0,3,1 and its transition
=RLLC. Them-order relation of the workLLCis given  pattern undef? is shown in Fig. 2a). By ordering all orbital
as(1,2,3,0 and its transition pattern undéiRLLC is shown in points of the compound eventually periodic word
Fig. 1(a). The m-order relation of the wordRLC is (1,2,0, QC+*CAB"=RLCRLLRLRRLL)*, we obtain itsm-order
i.e., moc(0)=0, moc(1)=2, moc(2)=1. After ordering relation (4,10,1,75,11,2,86,0,9,3. Noticing the difference
|QC|-|WC|=12 orbital points of the wordQC+*WC  between periodic states and transient states, we have the two
=RLLRLRRLRRLC we get its m-order relation separate mapping formulas
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olcl: ok cap(1)—>Tock cas=(i) +|QC|

if 7Tockcaps=(i)<|QC|-|CA|, i.e., transient states turn to other states,
%% ek cap(1)=>]QC|-[CA|+{mgcucas-(1) —|QCI-|CA+]QC|  [mod|QC]-[B])]}
if Tockcas=(i)=|QC|-|CA|, i.e., periodic states turn to periodic states.

The transition pattern under mappifitjin the symbolic space of the eventually compound periodic V@@ CAB” is shown
in the Fig. Zb) and it is clearly clustering in the symbolic space. The corresponding Stefan matrices for the transition patterns

in Figs. 2a) and 2b) are, respectively,

0 0 1
1 _
S(f)‘CRLRt)_ 2 2 é
and
0 O
0 O
1 1 11 1 1
0 1 1
3 _
S(f)‘RLC*CRLR”)_ 100
1 0 O
1 1 1 1 1
0 0 1
0 0 1
L 1 1 0]

These examples illustrate the clustering of the order relatioBecause th® G P+ product preserves the parity[2,4], i.e.,
of periodic and aperiodic words in the symbolic space andhe parity of the bIocIQs}(Q) equals that of;, ‘](Qs}(Q))
that of the corresponding block d|agor_1al|zat|op of their Ste—:\](sj), if we start to iterate from the orbital point whose
fan matrices under the second topological conjugate transfog—ymbo“C sequence is
mation. Hence the topological entropy is guaran-

: : 1 _ 3
teed to be invariant andht(fkcmw)_ht(f%mc*cmw)

=0.346 573 590 279 972. Q0 gSt 201 GjoySs VA - GgSs 2
In fact, in terms of the kneading theory by Milnor and
Thurston[5], the invariant formula(8) can also be mani-
fested. Take an admissible sequerges;S,S;..., where i=1,...]Q|,
sje{L,C,R}. One assigns the parity 1 to eachR and +1
to eachL. If the letterC appears, it is assigned the product of
the parities of all the preceding letters. Let denote the then the parityd; of the mapping
parity of letters;; then the kneading determinant is defined
by
2% g;--qigsi @qy s

Psr(n)=2, "7,

n RPRUPRIR ((o) PRSP {(o) I
®n:|| 5. di' " d1QISj+191 " "d|gISj+2 " »
n=0 =1

i=1,.../Q, j=1,...]

S,

According to thex product rule[2,11], the compound word

QC+S follows as in the symbolic space of the compound wdpdC+ S is the

same as that op! in the symbolic space of the woig| 0;
«Q) € Q) EH(Qs}(Q))ze(sj); therefore, the kneading determinant of
QC+S=(Qs; *)(Qs; ) (Qs3™)- -+ . ¢/2% on the compound wor@C+* S,
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the chaotic attractor abruptly, these crisis points also possess
the common formQ*RL” (Qeg, the set of primitive
words. Finally, the Misiurewicz points with a preperidd|

and an eventual periof8B| also belong to the typEAB™.

We can see that the conclusion of the eventually periodic
word in example 2 would be valid for the coarse-grained
chaos here.

(@)

(b) We now give further examples on the chaotic orbits to
show the power of the previous theoretical results.

Example 3: Intermittent chaotic sequend¥e consider
such an intermittent chaotic sequendeLR)” that appears
just before period 3. The corresponding sequence can be
written as[8]

B. Examples of chaotic words

FIG. 2. (a) Transition pattern of mappinf} on the orbital points
of the eventually periodic wor€@ RLR". (b) Transition pattern of
mappingf® on the orbital points of the compound eventually peri-
odic word RLC* CRLR*, on which a conspicuously clustering of
the symbolic space exists.

A=R[(LRR*RR]*, k=1,2,....

It is obvious that

Pocx s,f\QC\(T):J-*'n}_:l

A<(LRR” Vk=1.

For sufficiently largek, these orbits spend most of the time
traveling around as a period-3 pattern; the symbolic se-
As the topological entropy, is determined by the smallest quence is precisely the so-called intermittency. The results of
positive root 7, of this characteristic polynomiah, the second topological conjugate transformation of the inter-
= —In 7, [2,8], we thus obtain formul&8). mittent sequenced , k=8,12,16,20, are listed in Table I.

It is worth noting that there are no restrictions to the se-We can see that the second topological conjugate transfor-
quenceS in the procedure of the above proof; thus formulamation on the intermittent chaotic words preserves topologi-
(8) is valid for all admissible sequences such as periodiccal entropy.
aperiodic, coarse-grained chaotic, or fine-grained chaotic se- Example 4: Limit of Fibonacci sequencgelecting initial
quences; namely, the second topological conjugate transfogequences-,=RC and F;=RLC and using the addition
mation preserves the topological entropy for any sequencegperation® in the symbolic spacé., introduced by Peng
Se3,. [14], the Fibonacci sequences can be formed as

Before ending this subsection we briefly clarify the
coarse-grained chad40] in the frame of typeCAB” (B
62_2). The coarse-grained chaos ref_er_s to the orbits with For example,
positive Lyapunov exponent and a finite number of gram-
matical ruleq 3]. The structure of the coarse-grained chaotic
orbits in phase space is complex, but most of them can be
described by the symbolic type AB*. They contain many
important orbits such as the homoclinic poifif], band-
merging points[10], crisis points[15], and Misiurewicz
points[16,17]. When the stable set degenerates into a finite
string A and then goes to the unstable &, it forms the
homoclinic orbit, for example,RL(RR)”. The merging
points of 2 with 2"~ chaotic bands have the for®B™,  The limit of the series, constructed in this way is a coarse-
whereA andB stand for RC)* " with the replacement €  grained chaotic word. By a numerical calculation, it is im-
by L or R such thatA is odd andB even. For example, the possible to reach its infinite limit. In order to investigate the
2—1 merging point iIRL(RR)”, the 4—2 merging pointis character of the real limit, we could research the finite se-
RLRRRLRL)®, etc. While the unstable orbits collide with quences and focus on what would happened under the sec-

Fo=Fno1®Fn_2;

F,=RLC®RC=RLR(RYRC=RLLRC
F;=RLLRRRLG
F,=RLLRRRLRRLLR(C

Fs=RLLRRRLRRLLRLRLLRRRLC

TABLE I. A,=R[(LRR*RR]". [Notethatht(f)l\&)<ht(fl )]
Ak

MRLR

k h(f3,) h(f e, ,) h(f i)

8 0.481 209 788 480 959 0.481 209 788 480 959 0.481 209 788 480 959
12 0.481 211 818 735 089 0.481 211818 735 089 0.481 211 818 735 089
16 0.481 211 825 039 962 0.481 211 825 039 962 0.481 211 825 039 962
20 0.481 211 825 059 542 0.481 211 825 059 542 0.481 211 825 059 542
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TABLE Il. F,=F,_;®F,_, with F,=RC andF;=RLC.

k h(f3,) h(F ) h(f . )

6 0.547 665 729 752 595 0.547 665 729 752 595 0.547 665 729 752 595
7 0.547 665 773 919 357 0.547 665 773 919 357 0.547 665 773 919 357
8 0.547 665 773 919 804 0.547 665 773 919 804 0.547 665 773 919 804
9 0.547 665 773 919 804 0.547 665 773 919 804 0.547 665 773 919 804

ond topological conjugate transformation. The results for seping f! on the orbital points of the compound word
guenced=,, n=6-9, are listed in Table 1. We assert from QC+WC=RLLRLCare shown respectively in Fig(& and
the results of the finite step sequences that the topologicah the expression of the matrix

entropies of the limit of Fibonacci sequences are preserved

under the second topological conjugate transformation. 0 0100
0O 0 01O

C. Topological entropy of iterative maps and of the second S(fiRLC* Rd = 0 0 0 01
topological conjugate transformation 01 1 1 1

1 0 0 0 O

According to the first topological conjugate transforma-

tion [3], there exists the following general relation for topo- 11,4 corresponding largest eigenvalue determined by the

logical entropy under the action of the opera@Cx: equation (EA3)(A2—A—1)=0 is given by A\,=(1
1 —h(fl y—
1 h(fi,) if QC#(RO", nez, +ﬁ)/z. So (o, nd=i(f}, )=0-48121188. ..,
ht(fch* J= ht(fis)/Z“ if OC=(RC)*", nez,. (100  which obeys formulg10). On the other hand, the transition

relationship and Stefan matrix under the mapping

o . fIRLC= {3 on the same orbital points are shown in Figo)3
However, it is well known from the ergodic theof$8] that and in the expression of the matrix

there exists a formula for calculating the topological entropy

of k times iterations of the maf: 1 0 0 0 O
11 1 0 O
hy(f¥)=k-hy(f}), (11) (1 =lo 01 0 0
ARLC*RC
whereke Z., . Thus, for the cas@®C=# (RC)*", we have 00111

000 0 1
h(f  y=k-h(fl )=k-h(f: ).

Mcxs Macxs Moc The corresponding largest eigenvalue determined by the

Therefore, it seems that there exists an apparent inconsi§duation (:X)%=0 is \p=1, soh(f3_ _ )=h(f} )
tency between formula®) and(11). What mistake does this =0, which is consistent with formulé8). However, if the
paradox result from? We will discuss the problem by analyz{irst preimages and the second preimages of all orbital points
ing the concrete examples and show how we should explaiim the dynamical invariant interval are picked out first, then
formula (11) in terms of symbolic dynamics. the mapping 3 on the union of the original orbital points, the

Example 5: The periodic sequences WRC and QC first preimages, and the second preimages leads to the tran-
=RLC. The transition pattern and Stefan matrix under mapsition relationship in Fig. @) and the Stefan matrix is

"1 0000000O0O0GOGO OO O]
10000000O0GO0OGOTOTO0O0
011111111 11111
0000O0O0OOGOGOGO OGO OO0 1
00000O0T1T1T1T1T71110
0000O0TU1000GO00O0GO0GO0O0

s(rs {ouoiluoiz}):oo0001oooooooo
MeLoxret OV Or f 000000O0T1IT1TI1TI1TI1T1T10
0 000O0O0OOOGO OGO OUO OO0 1

01111 111111111
10000000O0GOGOTOTO0O0
1000000O0UO0O0GO0OGO0TO0 O

01111 111111111

L0 0 0O0DO0OO0O0OOGOGOO0 0 1
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It is easy to see that all these are inappropriate and should be
LLRLC Lc LRLC c RLC RLLRLC given up. With all the preimages d@; in the dynamical

! ‘Wj ! invariant interval, the mappind® on the set of points

0O;UOs-1 leads to the transition pattern in Figictand its

(a Stefan matrix is
N o AN
o : C N ’ 0010 0 0 0]
0O 0 O1 0 0O
0O 000 1 1 1
LRLe NI kalfmuww S(f)l\CRLLRw{OfUOf’l}): 0000111
IRC RLC g’ e’ RRLRLC [Ty 0 0 O1 0 O O
11 0 0 0 0 O

(© L J

FIG. 3. (a) Transition pattern of mappinff on the orbital points
of the compound superstable wdRd. Cx RC. (b) Transition pattern ~ The corresponding eigenvalue equation is stif(\®— 2\
of mappingf® on the orbital points of the compound superstable —2)=0. As a result, the topological entropy is preserved in
word RLC*RC. (c) Transition pattern of mapping® on the set of  the first refinement partition of the symbolic space by the set
points O{UO;-1UO;-2. Here O; represents the set of orbital of points O¢-1 [19]. The mappingf2 on the set of points
points,O¢-n thenth preimages of orbital points. For the superstableQ, U O; -1 leads to the transition pattern in Fig(c# and its
word RLC*RC, O;={LLRLCLC,LRLC,C,RLC,RLLRLG, Stefan matrix is
Os-1={RRLCRC,RLRLG, and  O;-2={LRRLCLRC,
LRLRLCRRLRLGRRCRRRLG.

The largest eigenvalue of the above Stefan matrix follows aSLLmeRLLRm

A= B+2=[(1+5)/2]% therefore, 2 3 0 ! !
MY e OrUO-1U O -2}) @
- Bht(f’l‘RLc* Rc{of}) - 3ht(f>l‘R|_c{of})'
R LR” c R _RLLR°°

which is consistent with formulél1). HereO; represents the .
set of|QC+xW(] orbital points andD¢-1 andOs -2 represent %«/
the sets of the first preimages and second preimages of al

original orbital points in the dynamical invariant interval, ()
f3 {O{U0;-1UO;-2} denotes the mappinty for the

ARLckRC _
parametei g, ¢, rc ON the set of point©;UO;-1U Os-2. LR® RC RLR

Example 6: The eventually periodic seque@RLLR". e LK CRLLR”\I_f:/
The transition pattern and Stefan matrix under the mapping

f1 on the point seD; of CRLLR" are shown in Fig. &)

0

RLLR™

and its Stefan matrix is {c)
0 1 1 0 LLR™ LR CRLLR™ R” RLR® SN\ RLLR™
0 0 0 1 LC RC
1 _
Seeur=| 0 0 0 1| @
1 1 1 O

FIG. 4. (a) Transition pattern of mappinf on the orbital points
of the eventually periodic word CRLLR". O
={LLR*,LR*,CRLLR’,R*,RLLR"}. (b) Transition pattern of
mappingf2 on the orbital points of the eventually periodic word
CRLLR". Note that the subintervdL LR*,LR™] is mapped onto a
single point, which is inappropriatéc) Transition pattern of map-
ping f on the set of point;UO;-1 of the eventually periodic
word CRLLR’; hereO;-1={LC,RC,RLR"}. In this case the in-
appropriate iteration does not exigt) Transition pattern of map-
ping f2 on the set of point©;UO;-1 of the eventually periodic
word CRLLR".

The eigenvalue equation is(A3—2\—2)=0. In contrast,
the transition pattern and Stefan matrix under mapgpman
Os is shown in Fig. 4b) and in the expression

2 _
S(f’\CRLLR*) o

Or RrR O
N =)
N =)
oo oo
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#h(f1,GC)/2"; if h(fk,GC)=h,(f},GC)/2" and k;=2",
then the words C is factorized asRC)* "+ S and the words
has topological entropy(f“,GC) and period|GC|/2".
Otherwise,GC is primitive. Since the DCP< product is
noncommutative, the factorization of a compound word ex-
ists uniquely.

Example 7: There are five superstable words with period
6, RLRRRC RLLRLC RLLRRG RLLLRC and
RLLLLC. The transition patterns under the mappiriésf?
on these words are respectively shown in Figa) &nd gb).
So only two wordsRLRRRCandRLLRLC are compound
and the rest are primitive. Computing the topological entro-
pies yields

S(} o (A O1UO-1}) =

OORrEFLR OO
OO0 ORrRFLR OO
P OOREFR OO
P OOREFR OO
ORr P OORLR
ORr P OORR
ORr P OOOR

0

The corresponding eigenvalue equation is
AN —AN2+AN—4) =\ (YN)3—2 N 2]
X[(VA)*=2\\+2]=0.

Evidently, the largest eigenvalue is determined by the equa-  Ni(f,RLRRRG=h(f* RLRRRG/2

tion [ (vA)3—2N—2]=0, so we obtain the result
{O+))
=2 (f} gy OV},

2
ACRLLR?

1
ACRLLR?

hy(f {O;UO;-1})=2h(f

This is what formula(11) means.

=0.240 605912 529 &0. . .,

h(f,RLLRLO =h,(f},RLC)
=0.481 211 825059 &. . .,

h(f3,RLLRLO=h,(f},RC)=0.

Summarizing the above two illustrations, we can explic-
itly rewrite formula(11) as We thus have the results that two words can be factorized
respectively as

hy(f¥{OfUO¢-1---UO¢-k-1}) =k- hy(f¥{O{}),

RLRRRG-RC*RLC, RLLRLC=RLC*RC.
whereO;-n represents thath preimages of the set of orbital
pointsO; and formula(8) as
f12¢ {oh=hy(f} o5

AQcx s

In general, if the period of a wor@ C can be factorized
as |GC|=k;k, -k, we watch carefully the transition pat-

hy( terns of the mappings

Then the specious inconsistency vanishes naturally. It has fka, fke, .. fhi flake | flakigkoks pkoki
clarified the difference between the above two important for-
mulas of topological entropy in the sense of the symbolic
dynamics.

ki 1k kqkok kqko+-k
fXi-1 |,___,f 123,___,f 12" K|

on the orbital points of the worC. Then by the above
method we can judge whether or not the w@e can be
factorized. Therefore, this new topological conjugate trans-
formation opens up a way to discriminate compound words
in the symbolic spac&., of two letters and even ik 5 of
three letters, etc. Further, it provides a method to seek the
generalization of the DGP product in more complex dy-
namical systems; for instance, by this method the dual

IV. A TOPOLOGICAL METHOD OF DISTINGUISHING
COMPOUND WORDS

Given any superstable wodC and any admissible word
S, we can easily construct a compound w@¢€* S. In the
symbolic spaces,, there are many more compound words
than primitive one$3]. The inverse question arises naturally X ;
how to locate compound words or how to decide whether £r0ducts in the symbolic spade; of three letters have been
word is primitive or compound. constructg_c[G]. . . .

The answer becomes evident when taking advantage of In addition, on the basis of the second topological conju-

the second topological conjugate transformation. For any s@?ti trfnsfodrmati_on we can introguceht_hﬁ inver:se opleratijon
perstable wordGC with the period being factorized as ©f th€* product in some sense, by which we have already

|GC| =K, -k, (ky,k,eZ,), we inspect the transition pattern shown that the method can be used to separate a primitive
of the mappings“t. f¥2 on its orbital points. If there ark, word fro.m the compoqnd words. Here we further conjecture
(i=1 or 2 self-closed clusters under the mappiifgin thle that the inverse operation of theproduct may generalize the

symbolic space and the transition patterns on these clustejﬁncept of tnofncor_n%oundhvzﬁr?s. We dnow aﬁcempt tfo e>t<_teno:
are the same or the inverse of each other, then the word ¢ € concept of period such that a word may have a fractiona

definitely be factorized in the sense of the D&Rroduct. .

period [20]. Let WC be a superstable periodic word with
Further, by calculating the topological entropies bfand fi period|WC|=m. If the transition pattern of compound map-
on the orbital points respectively, saly,(f,GC) and

ping f" on the orbital points ofV/C is appropriate and its
h,(f%,GC), and using the properties of the devil’s staircaset,()pmog'C‘Ell entropy ',S‘ calculgted to tbé then we cr:an de-
of the topological entropy3], the result follows that the fin€ & word(statg with fractional period, namelyf,. (x)
word GC can be factorized as a word with topological en- = f1x(X), wherem is prime ton, the parametex* is fixed,
tropy h,(f*,GC) and periodk; multiplying by another word and this word has a topological entropy valb&. When
with hy(f%,GC) and period |GC|/k; if h(f4,GC) changing the value of its parameter according toxtherod-
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RLRRRC “‘"fm mﬂ"’”‘f RLRRRC LRRRC@RMMC

LLRLC ic IRLC c RLC ™~ _RLLRLC LLRLCM™1C LRLC/™™C  RLC/ ™ ™\ RLLRLC

e K== e ST

RLLRRC LLRR@RLLRRC RLLRRC LLRRC@RLLMC

(a) (b)

FIG. 5. (a) Transition pattern of mappintf on the orbital points of superstable wof@8RRRC RLLRLC RLLRRG RLLLRG and
RLLLLC. Only in the symbolic space of the woRILRRR Cdoes clustering of the transition order exi&f). Transition pattern of mapping
£3 on the orbital points of superstable wol@s RRRGRLLRLG RLLRRG RLLLRG andRLLLLC. Only in the symbolic space of the
word RLLRLCdoes clustering of the transition order exist.

uct rule, we may use the inverse operation oftfgroduct to  interval of “mass” points in the graph of interval transitions
seek a new equal topological entropy class with a fractionalvould be shrunk into a point that supplies or receives the
period. If this is the case, there may exist a fractionalransfer of mass points and these two kinds of points are
renormalization-group ~ equation  such  asg"(x) called the source and sink, respectively. The Markov graph
=ag™(x/a) [20]. This may be an interesting type of dy- of the periodic orbiRLRRR Cof the mapf® is drawn in Fig.

namical word(state. 6(a) and that of the map? in Fig. 6(c). We can see that these
two Markov graphs have the same transition pattern, except
V. MARKOV GRAPHS UNDER THE SECOND the pointRRRR which is a source to supply the same two
TOPOLOGICAL CONJUGATE TRANSFORMATION subgraphs with mass points in Figich The pointRRRR

The Stefan matrices above are explained as the transitiofd!ly as the source does not contribute to the topological
of intervals. Moreover, it is very useful to explain them asENTOPY. In fact, only such points that are not only source but

the Markov graphs of the transitions of poitittates. From also sink may possibly contribute to the topological entropy.

the graph theory, the transitions of both intervals and points
are equivalent in the sense of duality. However, we can un- B. The eventually periodic orbit
derstand much more information from Markov graph such as  The eventually periodic orbits are the simplest example of
the symbolic kinetic analysig21], the stationary measure of coarse-grained chaos. They contain many important orbits
the topological Markov chaif@2], and the theoretical analy- suych as the homoclinic points, crisis points, and band-
sis of formal |anguage of finite automata from the periOdiC,merging points and have the common Symbo”c description
eventually periodic, and aperiodic unimodal ma@8-25.  cAB*. We adopt one of the typical examples discussed
Here we restrict our discussion to the second topologicaébove(examme 2[Figs. 2a) and 2b)]. The Markov graphs
conjugate transformation by the Markov graph. An importantyf the eventually periodic orbiCAB*=CRLR® and the
feature is that the probability measure of dynamical systemgompound wordRLC* CRLR*=RLCRLLRLRRLL)” are
in the Markov graph will be expressed more clearly than ingrawn in Figs. 7a) and 7b). Of course, the conclusion is the
the graph of interval transitions. We choose the examplegame as the previous periodic orbit, namely, all three Markov
from above to compare these two kinds of graphs. subgraphs in Fig. (b) are the same as Fig(dJ, except the
two sources fromd=[7,5] andh=[8,6].
In order to understand completely, we interpret this again
As we know, it is very easy to draw the Markov graph with the analysis of symbolic kinemati¢g1]. For the even-
from the Stefan matrix of the finite periodic orbit. Thus the tually periodic orbitCRLR’ of the unimodal may? the rule

A. The periodic orbit
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the topological Markov chain of the one-sided shift can be
easily obtained aR22| m=—Z%; ;p;P;; In P, where the in-
variant probabilityp;==;p;P;;, the transition probabilities
Pij=sijz;/zA(S), N(S) is the maximal positive eigenvalue
of the Stefan matrix of ", andZ={z} is the corresponding
eigenvector. Moreover, other coarse-grained chaotic se-
quences discussed in Sec. Il B would have the same conclu-
sion in the Markov graphs when we approach the limit of an
infinite sequence from the finite one.

Summing up the analysis of Markov graphs in this sec-
tion, we have that under the second topological conjugate
transformation, théQC| subgraphs of the maﬂ%‘ls of a

compound word) C* S are the same as the graph of the map
f)\s of the wordS except for the sources, which do not con-

tribute to the topological entropy, and botk%(;;'*s and fAS

have the same probability measure of the transition with
maximal entropy for the topological Markov chain.

Finally, we end this section with a brief discussion about
automata. If the finite automatdhis deduced by the Stefan
© matrix of the symbolic sequen&®C, then the Stefan matrix

FIG. 6. (@) Markov graph of the compound superstable word ©f the symbolic sequend@C+ S under the second topologi-
RC+RLC=RLRRRCof the mapf. The intervals are denoted by cal conjugate transformation will generate the finite automa-
a=LR, b=RRLR c=RRRR d=RRRLR and e=RLR (b)  tonS’, which is in a series ofQC]| finite autqmatas con-
Markov graph of the periodic orbRLC of the mapf. The inter-  Nected bylQ| sources. Bott§ andS' are equivalent in the
vals are denoted bp=LR and b=R. (c) Markov graph of the grammatical rule of formal language thedB6]. This is also
periodic orbitR L RR R Cof the mapf?, which is a series connecting 0One way of constructing the automata with equal topological

the graph in(b). The intervals are the same as(&. entropy.
of transition of orbital points in the Markov graph is given in VI. TOPOLOGICAL CONJUGATE CLASS
Ref.[21]. Carrying out the transition one time between two OF ITERATIVE MAPS

intervals with different massdsamely, the interval lengths

we can calculate its transition probability by the interval
lengths. If we suppose that the interval length of each tran-
sition point is equal to one, then the Stefan matrix can be We already know that the invariant of the topological en-
interpreted as a topological Markov chain. If we take succestropy by the* product ht(f}‘QC*W):ht(f)\QC) leads to the

sively the inverse maps™*,f~2,...,f ", then the entropy of first topological conjugate class, which is labeled by each
primitive word QCe g, (the set of primitive words
namely, a step of the devil's staircase of topological entropy
on the parametric axik3]. Is it possible to establish another

-0 topological conjugate relationship between mappifigand

f", ne Z,? The answer is yes. Analogously, the invariant of

the second topological conjugate relationship

ht(fk‘ﬁ*s{of})=ht(fis{0f}) can also give rise to a topo-

logical conjugate class between the mappirigsand f".

Given the mappind is with the parametek g represented by

an arbitrary admissible sequen8eén the unimodal map, we
can choose the appropriate paramekgyc.s with [QC]

=n. According to the second topological conjugate transfor-
mation, the mapping:%iS andeQC*S are topologically con-
jugate in the symbolic space. Therefore, in terms of topol-
ogy, the physical orbit of in the symbolic space undeéifS

o is topologically the same as that on each cluste®@ &k S in
FIG. 7. (a) Markov graph of the eventually periodic word

CRLR of the mapf!. The intervals are denoted t&y=[2,0], b the symbgllc .space u_ndéﬁocfs.. When the admissible se
=[0,3], andc=[3,1] according to Fig. &). (b) Markov graph of quencesS is flxe_d, WhI.Ch definitely belong_s to one of the
the eventually periodic wordRLCx CRLR’ of the mapf3. The  steps of the devil's staircase of the topological entropy on the
intervals are denoted by=[4,10, b=[10,1, c=[1,7], d parametric axi$3,27] (say,Se PC+[L*,RL”]) or one of the
=[7,5], e=[5,11], f=[11,2], g=[2,8], h=[8,6], i=[6,0], j single points of chaos, if the left worQC runs over the set
=[0,9], andk=[9,3] according to Fig. &). @ss Of all admissible superstable wordsamely, QC takes

A. Infinite number of topological conjugate classes
of iterative maps
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from all the infinitely many steps of the entropy stairgase In terms of topology, this operator is equivalent to the second

then a second topological conjugate class is formed for #opological conjugate transformation in the symbolic space

concreteS. Because the set of the first topological conjugateat the parametex gcyxn. Owing to formula(8), it leads to

classes has cardinal numb¢y, a second topological conju-

gate class also has cardinal numBgr. In addition, in view ht(foC)th(f

of the invariance of the first topological conjugate class, the

admissible sequenc®can take over sequences frge one  and in particular for the accumulation points =\ g ¢)* =

of the steps of the entropy staircase that contains infinitely loc] 1

many admissible sequences and corresponds to a first topo- ht(ngC*(QQ”): ht(gA(QC)W),

logical conjugate class with cardinal number or (b) the .

infinitely many steps of the entropy staircase or the infinitelywhereg(x) =g, (x)=f ‘A((%g*x |(x) are the fixed-point func-

many single points of chaos. Thus all the infinitely manytions of the renormalization operat®t That is, the second

second topological conjugate classes form a set. It is obviougpological conjugate transformation guarantees that the

that the cardinal number of the set of the second topologicateigenbaum bifurcation processes preserve topological en-

conjugate classes should also be the same as that of the setfpy[3]. The fixed-point functiong(x) of the operatofl at

the first topological conjugate class@amely,N;). the accumulation pointa.., are also the fixed-point func-
Therefore, it is clear that these two kinds of topologicaltions of the second topological conjugate transformation and

conjugate classes reflect an entropic invariant of the symg! andg/Qc are conjugate at the same accumulation points

bolic dynamics in two different ways. As far as the invari- \ . Thus the second topological conjugate transformation

ance of topological entropy is concerned, the motion of thesypplies a topological foundation of Feigenbaum’s univer-

dynamical systems is measured with the same critéfifdn  salities and a sharp topological frame in studying the transi-

the first topological conjugate class, while the motion of dif-tions to chaos in Feigenbaum’s scenario.

ferent dynamical systems in the second topological conjugate Knowledge of the topological characteristics would fur-

class is measured with different critefil®®. However, the  ther the exploration of the metric regulariti¢g7] of the

second equivalent class has a noticeable effect on eXplorir&/namiC{ﬂ Systems_ The second t0p0|ogica| Conjugate trans-

the metric characteristics. The method of measuring differenformation will reveal some new regularities for the invariant

objects by different criteria and thus seeking the invariant ingjstribution of the phase space and for the metric entropy, in

between is effective for studying characteristics or featuregarticular for the Lyapunov exponef28]. We believe that

of chaos such as the Self'Similarity. It becomes evident in thq“s topo|ogica| framework for the research of the metric

following that the second topological conjugate transformacharacteristics in the chaotic dynamical systems would be

tion supplies the topological foundation for the significant in the future.

renormalization-group operator.

|QC] e — [(QO)* M|
Aqcx QC) h‘”NQC)*"* QC)
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